197 research outputs found

    Influence of ionic additives on triclinic calcium pyrophosphate dihydrate precipitation

    Get PDF
    Triclinic calcium pyrophosphate dihydrate (t- CPPD) crystals are one of the two polymorphs of microcrystals that have been found in the joints of patients suffering from pseudogout. However, there is currently no treatment for inhibiting the formation of these crystals, which present a high inflammatory potential. In this context we studied in vitro the precipitation of t-CPPD in a stirred reactor under pH- and temperature-controlled conditions and determined the effect of selected biologically relevant ionic additives (Mg2+, Cu2+, Fe3+, Zn2+, S2O3 2−) on its formation. The results showed that 1 mM Fe3+, Zn2+, or Cu2+ induced the most significant changes by partly inhibiting the crystallization of t-CPPD and favoring the formation of an amorphous-CPP phase (98 wt %) in the presence of Fe3+ or a monoclinic-CPPD phase (78 or 71 wt %, respectively) in the presence of Zn2+ or Cu2+. Correlations between 31P solid-state NMR, XRD, and elemental analyses showed that the additive cations are inserted into the monoclinic-CPPD and/or amorphous-CPP phases. This study, which combines structural, morphological, and elemental analyses, paves the way toward a deeper comprehension of the role of ionic additives in preventing the formation of CPPD crystalline phases, and is a key step in long-term development of an effective therapeutic treatmen

    Microbobines et RMN en phase solide

    Get PDF
    National audienceThis PhD thesis, at the interface between chemistry and physics, uses Solid State Nuclear Magnetic Resonance (ssNMR) for both exploiting diversity of materials and developing new easy-to-implement methodologies.ssNMR has proved to be really efficient to study materials and especially their interface by precisely characterising chemical environment of studied nuclei [1]. However, the main drawback of this technique is its lack of sensitivity, each analysis requiring 30 to 400 mg of sample. Such an amount is particularly difficult to obtain for sol-gel thin-film layers or for biological studies like Kidney stones.In order to solve this issue, the MACS (Magic Angle Coil Spinning) technique has been recently developed [2]. It consists of a micro-scaled coil surrounding a capillary containing the sample. Only 30 to 100 ”g of material is necessary. As the microcoil is placed inside the usual solid state NMR rotor, no probe modification is needed.[1] C. Bonhomme, C. Gervais, and D. Laurencin, “Recent NMR developments applied to organic–inorganic materials,”Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 77, pp. 1–48, Feb. 2014.[2] D. Sakellariou, G. L. Goff, and J.-F. Jacquinot, “High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning,” Nature, vol. 447, no. 7145, pp. 694–697, Jul. 2007

    Multinuclear solid-state NMR investigation of Hexaniobate and Hexatantalate compounds

    Get PDF
    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). 1H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8–xM6O19·nH2O (A = alkali ion; M = Nb, Ta). 93Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5OÎŒ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), 93Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The 93Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5OÎŒ2H sites). 1D 23Na MAS and 2D 23Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The 23Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR (1H, 23Na, and 93Nb)

    Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus and Earth from superposed epoch analyses

    Get PDF
    We study interplanetary coronal mass ejections (ICMEs) measured by probes at different heliocentric distances (0.3-1 AU) to investigate the propagation of ICMEs in the inner heliosphere and determine how the generic features of ICMEs change with heliospheric distance. Using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER), Venus Express and ACE spacecraft, we analyze with the superposed epoch technique the profiles of ICME substructures, namely, the sheath and the magnetic ejecta. We determine that the median magnetic field magnitude in the sheath correlates well with ICME speeds at 1 AU, and we use this proxy to order the ICMEs at all spacecraft. We then investigate the typical ICME profiles for three categories equivalent to slow, intermediate, and fast ICMEs. Contrary to fast ICMEs, slow ICMEs have a weaker solar wind field at the front and a more symmetric magnetic field profile. We find the asymmetry to be less pronounced at Earth than at Mercury, indicating a relaxation taking place as ICMEs propagate. We also find that the magnetic field intensities in the wake region of the ICMEs do not go back to the pre-ICME solar wind intensities, suggesting that the effects of ICMEs on the ambient solar wind last longer than the duration of the transient event. Such results provide an indication of physical processes that need to be reproduced by numerical simulations of ICME propagation. The samples studied here will be greatly improved by future missions dedicated to the exploration of the inner heliosphere, such as Parker Solar Probe and Solar Orbiter.Peer reviewe

    Advances in the synthesis and structure of α-canaphite: a multitool and multiscale study

    Get PDF
    α-Canaphite (CaNa2P2O7·4H2O) is a layered calcium disodium pyrophosphate tetrahydrate phase of significant geological and potential biological interest. This study overcomes the lack of a reliable protocol to synthesize pure α-canaphite by using a novel simple and reproducible approach of double decomposition in solution at room temperature. The pure α-canaphite is then characterized from the atomic to the macroscopic level using a multitool and multiscale advanced characterization strategy, providing for the first time full resolution of the α-canaphite monoclinic structure, including the hydrogen bonding network. Synchrotron X-ray diffraction and neutron diffraction are combined with multinuclear solid state NMR experimental data and computational modeling via DFT/GIPAW calculations. Among the main characteristics of the α-canaphite structure are some strong hydrogen bonds and one of the four water molecules showing a different coordination scheme. This peculiar water molecule could be the last to leave the collapsed structure on heating, leading eventually to anhydrous α-CaNa2P2O7 and could also be involved in the internal hydrolysis of pyrophosphate ions as it is the closest water molecule to the pyrophosphate ions. Relating such detailed structural data on α-canaphite to its physico-chemical properties is of major interest considering the possible roles of canaphite for biomedical applications. The vibrational spectra of α-canaphite (deuterated or not) are analyzed and Raman spectroscopy appears to be a promising tool for the identification/diagnosis of such microcrystals in vitro, in vivo or ex vivo

    Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

    Get PDF
    peer-reviewedH.D.D., A.J.C., P.J.B. and B.J.H. would like to acknowledge the Dairy Futures Cooperative Research Centre for funding. H.P. and R.F. acknowledge funding from the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr ‘Synbreed—Synergistic Plant and Animal Breeding’ (grant 0315527B). H.P., R.F., R.E. and K.-U.G. acknowledge the Arbeitsgemeinschaft SĂŒddeutscher RinderzĂŒchter, the Arbeitsgemeinschaft Österreichischer FleckviehzĂŒchter and ZuchtData EDV Dienstleistungen for providing genotype data. A. Bagnato acknowledges the European Union (EU) Collaborative Project LowInputBreeds (grant agreement 222623) for providing Brown Swiss genotypes. Braunvieh Schweiz is acknowledged for providing Brown Swiss phenotypes. H.P. and R.F. acknowledge the German Holstein Association (DHV) and the ConfederaciĂłn de Asociaciones de Frisona Española (CONCAFE) for sharing genotype data. H.P. was financially supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) (grant PA 2789/1-1). D.B. and D.C.P. acknowledge funding from the Research Stimulus Fund (11/S/112) and Science Foundation Ireland (14/IA/2576). M.S. and F.S.S. acknowledge the Canadian Dairy Network (CDN) for providing the Holstein genotypes. P.S. acknowledges funding from the Genome Canada project entitled ‘Whole Genome Selection through Genome Wide Imputation in Beef Cattle’ and acknowledges WestGrid and Compute/Calcul Canada for providing computing resources. J.F.T. was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under awards 2013-68004-20364 and 2015-67015-23183. A. Bagnato, F.P., M.D. and J.W. acknowledge EU Collaborative Project Quantomics (grant 516 agreement 222664) for providing Brown Swiss and Finnish Ayrshire sequences and genotypes. A.C.B. and R.F.V. acknowledge funding from the public–private partnership ‘Breed4Food’ (code BO-22.04-011- 001-ASG-LR) and EU FP7 IRSES SEQSEL (grant 317697). A.C.B. and R.F.V. acknowledge CRV (Arnhem, the Netherlands) for providing data on Dutch and New Zealand Holstein and Jersey bulls.Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals
    • 

    corecore