1,870 research outputs found

    Minimally Invasive Periodontal Treatment Using the Er,Cr: YSGG Laser. A 2-year Retrospective Preliminary Clinical Study

    Get PDF
    Minimally invasive surgery (MIS) using the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser (Waterlase MD, Biolase, Irvine, CA) to treat moderate to advanced periodontal disease is presented as an alternative to conventional therapies. To date, there are few short- or long-term studies to demonstrate the effects of this laser in treating and maintaining periodontal health. Electronic clinical records from 16 patients – total of 126 teeth, with pocket depths ranging from 4 mm to 9 mm – were treated with the same protocol using the Er,Cr:YSGG laser. The mean baseline probing depths (PD) were 5 mm and clinical attachment levels (CAL) were 5 mm in the 4 - 6 mm pretreated laser group. The mean baseline probing depths were 7.5 and 7.6 mm for PD and CAL respectfully in the 7 – 9 mm pretreatment laser group. At the 2 year mark, the average PD was 3.2 ± 1.1 mm for the 4-6 mm pocket group and the 7-9 mm pocket group had a mean PD of 3.7 ± 1.2 mm. mean CAL was 3.1 ± 1.1 mm for the 4-6 mm group and 3.6 ± 1.2 for the 7-9 mm group with an overall reduction of 1.9 mm and 4.0 mm respectively. At one and two years, both groups remained stable with PD comparable to the three-month gains. The CAL measurements at one and two years were also comparable to the three-month gains

    Supersymmetric Deformations of Maximally Supersymmetric Gauge Theories

    Full text link
    We study supersymmetric and super Poincar\'e invariant deformations of ten-dimensional super Yang-Mills theory and of its dimensional reductions. We describe all infinitesimal super Poincar\'e invariant deformations of equations of motion of ten-dimensional super Yang-Mills theory and its reduction to a point; we discuss the extension of them to formal deformations. Our methods are based on homological algebra, in particular, on the theory of L-infinity and A-infinity algebras. The exposition of this theory as well as of some basic facts about Lie algebra homology and Hochschild homology is given in appendices.Comment: New results added. 111 page

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    Bright spots, physical activity investments that work : sweatcoin : a steps generated virtual currency for sustained physical activity behaviour change

    Get PDF
    Sweatcoin converts the step count recorded on smartphones into a virtual currency. Using this app, users generate financial rewards through physical activity, with higher levels of activity creating a higher ‘income’. Sweatcoins can subsequently be used to purchase commercially available products from an in-app marketplace

    Gene-Based Tests of Association

    Get PDF
    Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%–50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis

    A comparative study on the efficacy of 10% hypertonic saline and equal volume of 20% mannitol in the treatment of experimentally induced cerebral edema in adult rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertonic saline and mannitol are commonly used in the treatment of cerebral edema and elevated intracranial pressure (ICP) at present. In this connection, 10% hypertonic saline (HS) alleviates cerebral edema more effectively than the equal volume of 20% mannitol. However, the exact underlying mechanism for this remains obscure. This study aimed to explore the possible mechanism whereby 10% hypertonic saline can ameliorate cerebral edema more effectively than mannitol.</p> <p>Results</p> <p>Adult male Sprague-Dawley (SD) rats were subjected to permanent right-sided middle cerebral artery occlusion (MCAO) and treated with a continuous intravenous infusion of 10% HS, 20% mannitol or D-[1-<sup>3</sup>H(N)]-mannitol. Brain water content (BWC) as analyzed by wet-to-dry ratios in the ischemic hemisphere of SD rats decreased more significantly after 10% HS treatment compared with 20% mannitol. Concentration of serum Na<sup>+ </sup>and plasma crystal osmotic pressure of the 10% HS group at 2, 6, 12 and 18 h following permanent MCAO increased significantly when compared with 20% mannitol treated group. Moreover, there was negative correlation between the BWC of the ipsilateral ischemic hemisphere and concentration of serum Na<sup>+</sup>, plasma crystal osmotic pressure and difference value of concentration of serum Na<sup>+ </sup>and concentration of brain Na<sup>+ </sup>in ipsilateral ischemic hemisphere in the 10% HS group at the various time points after MCAO. A remarkable finding was the progressive accumulation of mannitol in the ischemic brain tissue.</p> <p>Conclusions</p> <p>We conclude that 10% HS is more effective in alleviating cerebral edema than the equal volume of 20% mannitol. This is because 10% HS contributes to establish a higher osmotic gradient across BBB and, furthermore, the progressive accumulation of mannitol in the ischemic brain tissue counteracts its therapeutic efficacy on cerebral edema.</p

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Developmental Trajectories of Body Mass Index Among Japanese Children and Impact of Maternal Factors during Pregnancy

    Get PDF
    Background The aims of this study were to 1) determine the distinct patterns of body mass index (BMI) trajectories in Japanese children, and 2) elucidate the maternal factors during pregnancy, which contribute to the determination of those patterns. Methodology/Principal Findings All of the children (1,644 individuals) born in Koshu City, Japan, between 1991 and 1998 were followed in a longitudinal study exploring the subjects’ BMI. The BMI was calculated 11 times for each child between birth and 12 years of age. Exploratory latent class growth analyses were conducted to identify trajectory patterns of the BMI z-scores. The distribution of BMI trajectories were best characterized by a five-group model for boys and a six-group model for girls. The groups were named “stable thin,” “stable average,” “stable high average,” “progressive overweight,” and “progressive obesity” in both sexes; girls were allocated to an additional group called “progressive average.” Multinomial logistic regression found that maternal weight, smoking, and skipping breakfast during pregnancy were associated with children included in the progressive obesity pattern rather than the stable average pattern. These associations were stronger for boys than for girls. Conclusions/Significance Multiple developmental patterns in Japanese boys and girls were identified, some of which have not been identified in Western countries. Maternal BMI and some unfavorable behaviors during early pregnancy may impact a child’s pattern of body mass development. Further studies to explain the gender and regional differences that were identified are warranted, as these may be important for early life prevention of weight-associated health problems

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa
    corecore