176 research outputs found

    Infrared Emission from Supernova Remnants: Formation and Destruction of Dust

    Full text link
    We review the observations of dust emission in supernova rem- nants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observa- tional limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept-up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.Comment: Published in the Springer Handbook of Supernova

    The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: IV. Capabilities and predicted performance for exoplanet characterization

    Get PDF
    The Near-Inrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST) is a very versatile instrument, offering multiobject and integral field spectroscopy with varying spectral resolution (\sim30 to \sim3000) over a wide wavelength range from 0.6 to 5.3 micron, enabling scientists to study many science themes ranging from the first galaxies to bodies in our own Solar System. In addition to its integral field unit and support for multiobject spectroscopy, NIRSpec features several fixed slits and a wide aperture specifically designed to enable high precision time-series and transit as well as eclipse observations of exoplanets. In this paper we present its capabilities regarding time-series observations, in general, and transit and eclipse spectroscopy of exoplanets in particular. Due to JWST's large collecting area and NIRSpec's excellent throughput, spectral coverage, and detector performance, this mode will allow scientists to characterize the atmosphere of exoplanets with unprecedented sensitivity

    The between and within day variation in gross efficiency

    Get PDF
    Before the influence of divergent factors on gross efficiency (GE) [the ratio of mechanical power output (PO) to metabolic power input (PI)] can be assessed, the variation in GE between days, i.e. the test–retest reliability, and the within day variation needs to be known. Physically active males (n = 18) performed a maximal incremental exercise test to obtain VO2max and PO at VO2max (PVO2max), and three experimental testing days, consisting of seven submaximal exercise bouts evenly distributed over the 24 h of the day. Each submaximal exercise bout consisted of six min cycling at 45, 55 and 65% PVO2max, during which VO2 and RER were measured. GE was determined from the final 3 min of each exercise intensity with: GE = (PO/PI) × 100%. PI was calculated by multiplying VO2 with the oxygen equivalent. GE measured during the individually highest exercise intensity with RER <1.0 did not differ significantly between days (F = 2.70, p = 0.08), which resulted in lower and upper boundaries of the 95% limits of agreement of 19.6 and 20.8%, respectively, around a mean GE of 20.2%. Although there were minor within day variations in GE, differences in GE over the day were not significant (F = 0.16, p = 0.99). The measurement of GE during cycling at intensities approximating VT is apparently very robust, a change in GE of ~0.6% can be reliably detected. Lastly, GE does not display a circadian rhythm so long as the criteria of a steady-state VO2 and RER <1.0 are applied

    Formin 1-Isoform IV Deficient Cells Exhibit Defects in Cell Spreading and Focal Adhesion Formation

    Get PDF
    Background: Regulation of the cytoskeleton is a central feature of cell migration. The formin family of proteins controls the rate of actin nucleation at its barbed end. Thus, formins are predicted to contribute to several important cell processes such as locomotion, membrane ruffling, vesicle endocytosis, and stress fiber formation and disassociation. Methodology/Principal Findings: In this study we investigated the functional role of Formin1-isoform4 (Fmn1-IV) by using genetically null primary cells that displayed augmented protrusive behaviour during wound healing and delayed cell spreading. Cells deficient of Fmn1-IV also showed reduced efficiency of focal adhesion formation. Additionally, we generated an enhanced green fluorescence protein (EGFP)-fused Fmn1-IV knock-in mouse to monitor the endogenous subcellular localization of Fmn1-IV. Its localization was found within the cytoplasm and along microtubules, yet it was largely excluded from adherens junctions. Conclusions/Significance: It was determined that Fmn1-IV, as an actin nucleator, contributes to protrusion of the cell’s leading edge and focal adhesion formation, thus contributing to cell motility

    Heterogeneity of fractional anisotropy and mean diffusivity measurements by in vivo diffusion tensor imaging in normal human hearts

    Get PDF
    Background: Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described. Methods: Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls. Results: FA was higher in the mesocardium (0.46 ±0.04) than the endocardium (0.40 ±0.04, p≤0.001) and epicardium (0.39 ±0.04, p≤0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 ±0.03 vs 0.40 ±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 ±0.07 vs endocardium 0.91 ±0.08×10-3 mm2/s, p = 0.04). With the lateral wall (0.87 ± 0.08×10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 ±0.08×10-3 mm2/s, p = 0.016) and septum (0.92 ±0.07×10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 ±2.5 vs endocardium 13.1 ±2.2, p<0.001; vs epicardium 12.0 ± 2.4, p<0.001) and regionally in the septum (16.0 ±3.4 vs lateral wall 11.5 ± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium. Conclusions: In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified

    Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis

    Get PDF
    Computational approaches have promised to organize collections of functional genomics data into testable predictions of gene and protein involvement in biological processes and pathways. However, few such predictions have been experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology community. Further, it remains unclear what biological concerns should be taken into account when using computational methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics (doi:10.1371/journal.pgen.1000407). Here we analyze and explore the results of this study that are broadly applicable for computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes representing the genomic background. Our study leads to several conclusions that are important to consider when driving laboratory investigations using computational prediction approaches. While most genes in yeast are already known to participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for annotation of additional gene functions. We find that different analysis techniques and different underlying data can both greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing prediction and validation steps iteratively allows us to more completely characterize a biological area of interest. While this study focused on a specific functional area in yeast, many of these observations may be useful in the contexts of other processes and organisms

    A Review of Surgical Informed Consent: Past, Present, and Future. A Quest to Help Patients Make Better Decisions

    Get PDF
    Contains fulltext : 87422.pdf (publisher's version ) (Closed access)BACKGROUND: Informed consent (IC) is a process requiring a competent doctor, adequate transfer of information, and consent of the patient. It is not just a signature on a piece of paper. Current consent processes in surgery are probably outdated and may require major changes to adjust them to modern day legislation. A literature search may provide an opportunity for enhancing the quality of the surgical IC (SIC) process. METHODS: Relevant English literature obtained from PubMed, Picarta, PsycINFO, and Google between 1993 and 2009 was reviewed. RESULTS: The body of literature with respect to SIC is slim and of moderate quality. The SIC process is an underestimated part of surgery and neither surgeons nor patients sufficiently realize its importance. Surgeons are not specifically trained and lack the competence to guide patients through a legally correct SIC process. Computerized programs can support the SIC process significantly but are rarely used for this purpose. CONCLUSIONS: IC should be integrated into our surgical practice. Unfortunately, a big gap exists between the theoretical/legal best practice and the daily practice of IC. An optimally informed patient will have more realistic expectations regarding a surgical procedure and its associated risks. Well-informed patients will be more satisfied and file fewer legal claims. The use of interactive computer-based programs provides opportunities to improve the SIC process.1 juli 201

    Formin1 Mediates the Induction of Dendritogenesis and Synaptogenesis by Neurogenin3 in Mouse Hippocampal Neurons

    Get PDF
    Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation

    Alcohol-related brain damage in humans

    Get PDF
    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics

    The Intensive Diet and Exercise for Arthritis (IDEA) trial: design and rationale

    Get PDF
    Background: Obesity is the most modifiable risk factor, and dietary induced weight loss potentially the best nonpharmacologic intervention to prevent or to slow osteoarthritis (OA) disease progression. We are currently conducting a study to test the hypothesis that intensive weight loss will reduce inflammation and joint loads sufficiently to alter disease progression, either with or without exercise. This article describes the intervention, the empirical evidence to support it, and test-retest reliability data. Methods/Design: This is a prospective, single-blind, randomized controlled trial. The study population consists of 450 overweight and obese (BMI = 27-40.5 kg/m2) older (age greater than or equal to 55 yrs) adults with tibiofemoral osteoarthritis. Participants are randomized to one of three 18-month interventions: intensive dietary restriction-plus-exercise; exercise-only; or intensive dietary restriction-only. The primary aims are to compare the effects of these interventions on inflammatory biomarkers and knee joint loads. Secondary aims will examine the effects of these interventions on function, pain, and mobility; the dose response to weight loss on disease progression; if inflammatory biomarkers and knee joint loads are mediators of the interventions; and the association between quadriceps strength and disease progression. Results: Test-retest reliability results indicated that the ICCs for knee joint load variables were excellent, ranging from 0.86 - 0.98. Knee flexion/extension moments were most affected by BMI, with lower reliability with the highest tertile of BMI. The reliability of the semi-quantitative scoring of the knee joint using MRI exceeded previously reported results, ranging from a low of 0.66 for synovitis to a high of 0.99 for bone marrow lesion size. Discussion: The IDEA trial has the potential to enhance our understanding of the OA disease process, refine weight loss and exercise recommendations in this prevalent disease, and reduce the burden of disability. Originally published BMC Musculoskeletal Disorders, Vol. 10, No. 93, July 200
    corecore