21 research outputs found

    Selective Optical Control of Synaptic Transmission in the Subcortical Visual Pathway by Activation of Viral Vector-Expressed Halorhodopsin

    Get PDF
    The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions

    Cancer chemoprevention: lessons learned and future directions

    Get PDF
    The concept of delaying or preventing epithelial transformation remains a viable and attainable goal for the future. Drug-based strategies for chemoprevention of the future may predominantly rely upon targeted therapies with tolerable but defined toxicities for treatment of individuals diagnosed with intraepithelial neoplasias. Foods, diet manipulation strategies, or nutraceuticals may be more appropriate to delay or prevent carcinogenesis progression in healthy populations with genetic or epidemiologic evidence of risk for future transformation

    Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation

    Get PDF
    The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire) length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D) axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations

    Sniff-synchronized, gradient-guided olfactory search by freely moving mice

    Get PDF
    For many organisms, searching for relevant targets such as food or mates entails active, strategic sampling of the environment. Finding odorous targets may be the most ancient search problem that motile organisms evolved to solve. While chemosensory navigation has been well characterized in microorganisms and invertebrates, spatial olfaction in vertebrates is poorly understood. We have established an olfactory search assay in which freely moving mice navigate noisy concentration gradients of airborne odor. Mice solve this task using concentration gradient cues and do not require stereo olfaction for performance. During task performance, respiration and nose movement are synchronized with tens of milliseconds precision. This synchrony is present during trials and largely absent during inter-trial intervals, suggesting that sniff-synchronized nose movement is a strategic behavioral state rather than simply a constant accompaniment to fast breathing. To reveal the spatiotemporal structure of these active sensing movements, we used machine learning methods to parse motion trajectories into elementary movement motifs. Motifs fall into two clusters, which correspond to investigation and approach states. Investigation motifs lock precisely to sniffing, such that the individual motifs preferentially occur at specific phases of the sniff cycle. The allocentric structure of investigation and approach indicates an advantage to sampling both sides of the sharpest part of the odor gradient, consistent with a serial-sniff strategy for gradient sensing. This work clarifies sensorimotor strategies for mouse olfactory search and guides ongoing work into the underlying neural mechanisms

    Activity recall in a visual cortical ensemble

    No full text
    Cue-triggered recall of learned temporal sequences is an important cognitive function that has been attributed to higher brain areas. Here recordings in both anesthetized and awake rats demonstrate that after repeated stimulation with a moving spot that evoked sequential firing of an ensemble of primary visual cortex (V1) neurons, just a brief flash at the starting point of the motion path was sufficient to evoke a sequential firing pattern that reproduced the activation order evoked by the moving spot. The speed of recalled spike sequences may reflect the internal dynamics of the network rather than the motion speed. In awake rats, such recall was observed during a synchronized ('quiet wakeful') brain state having large-amplitude, low-frequency local field potential (LFP) but not in a desynchronized ('active') state having low-amplitude, high-frequency LFP. Such conditioning-enhanced, cue-evoked sequential spiking of a V1 ensemble may contribute to experience-based perceptual inference in a brain state-dependent manner
    corecore