15 research outputs found

    The energy production rate & the generation spectrum of UHECRs

    Full text link
    We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d\dot{n} /dE\propto E^-\alpha (1+z)^m, our results are accurate at high energy, E>10^18.7 eV, to better than 15%, providing a simple and straightforward method for inferring d\dot{n}/dE from the observed flux at E. We show that current measurements of the UHECR spectrum, including the latest Auger data, imply E^2d\dot{n}/dE(z=0)=(0.45\pm0.15)(\alpha-1) 10^44 erg Mpc^-3 yr^-1 at E<10^19.5 eV with \alpha roughly confined to 2\lesseq\alpha<2.7. The uncertainty is dominated by the systematic and statistic errors in the experimental determination of individual CR event energy, (\Delta E/E)_{sys} (\Delta E/E)_{stat} ~20%. At lower energy, d\dot{n}/dE is uncertain due to the unknown Galactic contribution. Simple models in which \alpha\simeq 2 and the transition from Galactic to extra-Galactic sources takes place at the "ankle", E ~10^19 eV, are consistent with the data. Models in which the transition occurs at lower energies require a high degree of fine tuning and a steep spectrum, \alpha\simeq 2.7, which is disfavored by the data. We point out that in the absence of accurate composition measurements, the (all particle) energy spectrum alone cannot be used to infer the detailed spectral shapes of the Galactic and extra-Galactic contributions.Comment: 9 pages, 11 figures, minor revision

    Axion-like particles as ultra high energy cosmic rays?

    Full text link
    If Ultra High Energy Cosmic Rays (UHECRs) with E>4 10^{19} eV originate from BL Lacertae at cosmological distances as suggested by recent studies, the absence of the GZK cutoff can not be reconciled with Standard-Model particle properties. Axions would escape the GZK cutoff, but even the coherent conversion and back-conversion between photons and axions in large-scale magnetic fields is not enough to produce the required flux. However, one may construct models of other novel (pseudo)scalar neutral particles with properties that would allow for sufficient rates of particle production in the source and shower production in the atmosphere to explain the observations. As an explicit example for such particles we consider SUSY models with light sgoldstinos.Comment: 5 pages, 2 postscript figures, ref. adde

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    1.6 Cosmic-ray detectors

    No full text

    Electrocatalysis of Hydrogen Evolution: Progress in Cathode Activation

    No full text
    corecore