15 research outputs found

    Herschel reveals a molecular outflow in a z = 2.3 ULIRG

    Get PDF
    We report the results from a 19-h integration with the Spectral and Photometric Imaging REceiver (SPIRE) Fourier Transform Spectrometer aboard the Herschel Space Observatory which has revealed the presence of a molecular outflow from the Cosmic Eyelash (SMM J2135−0102) via the detection of blueshifted OH absorption. Detections of several fine-structure emission lines indicate low-excitation H ii regions contribute strongly to the [C ii] luminosity in this z = 2.3 ultra-luminous infrared galaxy (ULIRG). The OH feature suggests a maximum wind velocity of 700 km s− 1, which is lower than the expected escape velocity of the host dark matter halo, ≈ 1000 km s− 1. A large fraction of the available molecular gas could thus be converted into stars via a burst protracted by the resulting gas fountain, until an active galactic nucleus (AGN)-driven outflow can eject the remaining gas

    Western oceanus procellarum as seen by c1xs on chandrayaan-1

    Get PDF
    We present the analysis of an X-ray fluorescence (XRF) observation of the western part of Oceanus Procellarum on the Moon’s nearside made by the Chandrayaan-1 X-ray Spectrometer on 10th February 2009. Through forward modelling of the X-ray spectra, we provide estimates of the MgO/SiO2 and Al2O3/SiO2 ratios for seven regions along the flare’s ground track. These results are combined with FeO and TiO2 contents derived from Clementine multispectral reflectance data in order to investigate the compositional diversity of this region of the Moon. The ground track observed consists mainly of low-Ti basaltic units, and the XRF data are largely consistent with this expectation. However, we obtain higher Al2O3/SiO2 ratios for these units than for most basalts in the Apollo sample collection. The widest compositional variation between the different lava flows is in wt% FeO content. A footprint that occurs in a predominantly highland region, immediately to the north of Oceanus Procellarum, has a composition that is consistent with mixing between low-Ti mare basaltic and more feldspathic regoliths. In contrast to some previous studies, we find no evidence for systematic differences in surface composition, as determined through X-ray and gamma-ray spectroscopy techniques

    The Vega debris disc: A view from Herschel

    Get PDF
    We present five band imaging of the Vega debris disc obtained using the Herschel Space Observatory. These data span a wavelength range of 70-500 mu m with full-width half-maximum angular resolutions of 5.6-36.9 ''. The disc is well resolved in all bands, with the ring structure visible at 70 and 160 mu m. Radial profiles of the disc surface brightness are produced, and a disc radius of 11 '' (similar to 85AU) is determined. The disc is seen to have a smooth structure thoughout the entire wavelength range, suggesting that the disc is in a steady state, rather than being an ephemeral structure caused by the recent collision of two large planetesimals

    Planetary X-ray fluorescence analogue laboratory experiments and an elemental abundance algorithm for C1XS

    No full text
    We have conducted laboratory experiments as an analogue to planetary XRF (X-ray fluorescence) missions in order to investigate the role of changing incidence (and phase) angle geometry and sample grain-size on the intensity of XRF from regolith-like samples. Our data provide evidence of a grain-size effect, where XRF line intensity decreases with increasing sample grain-size, as well as an almost ubiquitous increase in XRF line intensity above incidence angles of ~60°. Data from a lunar regolith simulant are also used to test the accuracy of an XRF abundance algorithm developed at the Rutherford Appleton Laboratory (RAL), which is used to estimate the major element abundance of the lunar surface from C1XS (Chandrayaan-1 X-ray Spectrometer) XRF data. In ideal situations (i.e., when the input spectrum is well defined and the XRF spectrum has a sufficient signal to noise ratio) the algorithm can recover a known rock composition to within 1.0 elemental wt. % (1 σ)

    Calibration and performance of the LWS

    No full text
    The status of calibration and performance of the ISO Long-Wavelength Spectrometer eleven months after launch is described. The strategy followed for the calibration observations and first results are summarized. The overall performance of the instrument essentially fulfills the expectations; certain changes in sensitivity of the detectors are reported. Some improvements in the way observations are executed, which resulted from the in-flight experience, are explained

    Cryogenic magnetic bearing scanning mechanism design for the SPICA/SAFARI Fourier Transform Spectrometer

    No full text
    TNO, together with its partners Micromega and SRON, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. The optics of the FTS scanning mechanism (FTSM) consists of two back-to-back cat's-eyes. The optics are mounted on a central "back-bone" tube which houses all the important mechatronic parts: the magnetic bearing linear guiding system, a magnetic linear motor serving as the OPD actuator, internal metrology with nanometer resolution, and a launch lock. A magnetic bearing is employed to enable a large scanning stroke in a small volume. It supports the optics in a freefloating way with no friction, or other non-linearities, enabling sub-nanometer accuracy within a single stage with a stroke of -4 mm to +31.5 mm. Because the FTSM will be used at cryogenic temperatures of 4 Kelvin, the main structure and optics are all constructed from 6061 Aluminum. The overall outside dimensions of the FTSM are: 393 × 130 × 125 mm, and the mass is 2.2 kg. © 2010 SPIE
    corecore