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Abstract 

 

We present the analysis of an X-ray fluorescence (XRF) observation of the western part 

of Oceanus Procellarum on the Moon’s nearside made by the Chandrayaan-1 X-ray 

Spectrometer on 10th February 2009.  Through forward modelling of the X-ray spectra, 

we provide estimates of the MgO/SiO2 and Al2O3/SiO2 ratios for seven regions along the 

flare’s ground track.  These results are combined with FeO and TiO2 contents derived 

from Clementine multispectral reflectance data in order to investigate the compositional 

diversity of this region of the Moon.  The ground track observed consists mainly of low-
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Ti basaltic units, and the XRF data are largely consistent with this expectation.  However, 

we obtain higher Al2O3/SiO2 ratios for these units than for most basalts in the Apollo 

sample collection.  The widest compositional variation between the different lava flows is 

in wt % FeO content.  A footprint that occurs in a predominantly highland region, 

immediately to the north of Oceanus Procellarum, has a composition that is consistent 

with mixing between low-Ti mare basaltic and more feldspathic regoliths.  In contrast to 

some previous studies, we find no evidence for systematic differences in surface 

composition, as determined through X-ray and gamma-ray spectroscopy techniques. 

 

1. Introduction 

 

1.1. Oceanus Procellarum 

 

Oceanus Procellarum, in the western hemisphere of the Moon, is the largest of the lunar 

maria.  Its numerous lava flow deposits are highly diverse in composition and eruption 

age (e.g., Pieters, 1978; Wilhelms et al., 1987; Hiesinger et al., 2003; Hackwill et al., 

2006).  The Oceanus Procellarum deposits have inferred crater-count ages that span from 

the early stages of mare volcanism (~3.6 Ga) through to the potentially youngest 

(~1.2 Ga) basalts on the lunar surface (Hiesinger et al., 2003).  The region, therefore, 

provides an opportunity to investigate the temporal evolution of lunar volcanism and the 

Moon’s thermal history.  The wide range of TiO2 abundance in the Apollo and Luna mare 

basalt samples serves as the primary basis for their chemical classification (Neal and 

Taylor, 1992).  These samples provide ground truth information for the remote sensing 

campaigns that allow geochemical and compositional mapping of unsampled regions of 

the Moon.  There does not appear to be a simple correlation between the age and 

composition of lava flows on the lunar surface (e.g., Pieters, 1978; Giguere et al., 2000; 

Hiesinger et al., 2003, 2011).  However, spectral reflectance data for late stage lava flows 

on the western nearside indicate that they have high TiO2 contents (Charette et al., 1974; 

Pieters, 1978; Johnson et al., 1991; Blewett et al., 1997; Davis, 1980; Elphic et al., 2000, 

2002) and a significant olivine component (Pieters et al., 1980; Staid et al., 2011). 
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1.2. C1XS 

 

The Chandrayaan-1 X-ray Spectrometer (C1XS) was a compact X-ray spectrometer 

(Grande et al., 2009a; 2009b; Howe et al., 2009) onboard the Chandrayaan-1 mission 

(Bhandari, 2005; Goswami and Annadurai, 2009) and was designed to measure the 

abundance of major rock-forming elements (e.g., Mg, Al, Si, Ca, Ti, and Fe) in the lunar 

surface.  One of the major scientific objectives (Crawford et al., 2009) was to provide 

new independent measurements of the composition of the mare basalts and thereby help 

constrain the thermal and chemical evolution of the lunar mantle.  The premature end to 

the Chandrayaan-1 mission, coupled with low solar activity during its lifetime, meant that 

this objective was only partially fulfilled.  However, data for basaltic regions were 

obtained from swaths through Mare Serenitatis, and through Mare Insularum, Mare 

Cognitum, and Mare Nubium (Weider et al., 2012a), as well as for a ground track 

through the western part of Oceanus Procellarum, which we analyse in this paper.  In 

addition, an observation over a portion of the south-central nearside highlands was 

analysed by Narendranath et al. (2011). 

 

1.3. Planetary XRF 

 

Planetary X-ray fluorescence (XRF) is the process in which X-rays emitted from the Sun 

during flare events interact with atmosphere-less bodies in the inner Solar System and 

cause ionisation of atoms within the top ~100 µm of the regolith (e.g., Yin et al., 1993; 

Clark and Trombka, 1997).  The resulting fluorescent X-rays, with characteristic 

energies, can be measured by an orbiting XRF spectrometer (e.g., C1XS).  Analysis of 

the resulting X-ray spectra can be used to map the abundance of major elements such as 

Mg, Al, and Si (also Ca, Ti, and Fe during strong solar activity) on the planetary surface.  

Planetary XRF missions include an additional detector to simultaneously measure the 

incident solar X-ray flux, which varies on short timescales.  C1XS was accompanied on 

Chandrayaan-1 by the X-ray Solar Monitor (XSM) for this purpose.  Full descriptions of 

both these instruments and their calibrations have been published previously in a suite of 
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papers (Huovelin et al., 2002; Alha et al., 2009; Howe et al., 2009; Narendranath et al., 

2010). 

 

1.4. Geologic context of observation 

 

Lunar XRF from a B-class (10-7 to 10-6 Wm-2) solar flare on 10th February 2009 was 

observed by C1XS.  This observation had an ~1800 km-long ground track (full width 

footprint of ~50 km) through western Oceanus Procellarum at a longitude of ~290° 

(Figure 1).  No previous lunar XRF instrument (e.g., on Apollo 15 and 16) has mapped 

this region of the Moon’s surface.  At its finest resolution (based on counting statistics), 

the observation can be divided into seven spatially resolved regions that run through 

western Oceanus Procellarum and into an area of highlands to the north of the maria.  

This provides an opportunity to study the major element composition and evolution of 

mare basalts over a number of separate lava flows.  The ground track falls mainly within 

the outer band of concentric (according to Wilhelms et al., 1987) Procellarum mare 

deposits.  These consist of Upper Imbrian (~3.5 Ga), mostly low-Ti (~3 wt% TiO2) 

basalts.  Clementine multispectral reflectance data show that the ground track is more 

variable in FeO (Figure 1b) than TiO2 (Figure 1c) content.  The FeO concentration varies 

from ~6 wt% in the northern (highlands) region to ~18 wt% in the basaltic area.  FeO and 

TiO2 values are derived using the algorithms of Gillis et al. (2004) and Gillis et al. 

(2003), respectively.  We obtained and processed the data from the Lunar and Planetary 

Institute’s Clementine Mapping project (http://www.lpi.usra.edu/lunar/tools/clementine/) 

and our own in-house IDL (Interactive Data Language) code.  The FeO variation within 

the flare’s ground track is therefore more representative of the lithological diversity in 

Oceanus Procellarum. 

 

2. Data and spectral modelling 

 

Raw X-ray flux data during the C1XS observation on 10th February 2009 (between 

23:07:54 and 23:25:09 U.T.) were collected in the time-tagged single pixel mode (see 

Howe et al., 2009), converted to 16 s binned spectra, and then calibrated using pre-flight 
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and in-flight calibration information (Narendranath et al., 2010), and instrument 

housekeeping data.  Flux from each of the 24 instrument detectors were co-added in order 

to obtain sufficient signal to noise ratios.  The ground track has been split into seven 

regions of interest (ROI), as shown in Figure 1.  The boresight locations of each ROI are 

given in Table 1 and the spectra are shown in Figure 2.  Detector background levels, 

determined during quiet sun periods, were subtracted from the seven individual spectra 

and the resultant spectra (Figure 2) were forward modelled using the RAL abundance 

algorithm (Weider et al., 2011).  This algorithm employs a modified fundamental 

parameters approach (e.g., He and Van Espen, 1991) based on the methods of Clark and 

Trombka (1997); it has been described by Swinyard et al. (2009) and Weider et al. (2011) 

and shown to successfully replicate ground truth information for a C1XS observation of 

the Apollo 14 landing site (Weider et al., 2012a).  The algorithm requires several inputs: 

(i) the modelled solar spectrum, (ii) the efficiency of the C1XS instrument, (iii) an 

arbitrary initial rock composition, and (iv) the phase angle of the observation.  These 

parameters and the methodology we employed for this analysis are fully described by 

Weider et al. (2012a). 

 

2.1 Si normalisation 

 

In the RAL abundance algorithm the modelled spectrum is normalised to the XRF data 

using the total counts within the Si K! peak.  This normalisation is possible because the 

Si concentration of most lunar soils and regolith breccias is within a narrow range of 18–

23 elemental wt % (e.g., Rhodes and Blanchard, 1981; Fruland, 1983; Morris et al., 1983; 

Simon et al., 1985; McKay et al., 1986, 1989; Jerde et al., 1987, 1990).  All other 

elemental abundances are therefore assessed against the fixed Si (21 wt %; Prettyman et 

al., 2006) and are expressed as elemental ratios (i.e., Mg/Si and Al/Si).  This 

normalisation largely cancels out inaccuracies in the results caused by calibration 

uncertainties and variations in XRF intensity that are related to physical and 

compositional heterogeneities in the regolith (Clark and Trombka, 1997; Maruyama et 

al., 2008; Näränen et al., 2008; Weider et al., 2011).  Theoretical and experimental 

investigations of XRF geometry effects (e.g., Maruyama et al., 2008; Näränen et al., 
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2008; Parvianen et al., 2011; Weider et al., 2011) have shown that it can be problematic 

to express XRF-derived abundances as ratios of two elements that differ significantly in 

energy (e.g., Si and Fe).  However, we present results only for ratios of elements that 

have similar X-ray energies and so our results are not subject to any phase angle effects.  

It is important to note that normalisation with respect to Si has only a minor effect on the 

uncertainties for the Mg and Al results, which are instead completely dominated by the 

lack of a direct measure of the incident solar flare spectrum (see below). 

 

2.2 Flare temperature estimate 

 

Although XSM was flown onboard Chandrayaan-1 (see Section 1.3.) to provide a direct 

measure of the incident solar spectrum, the flare described here was below its minimum 

detection capabilities and therefore an alternative source of a suitable solar spectrum was 

required.  We used data from GOES-10 (Geostationary Operational Environment 

Satellite) to estimate a range of likely flare plasma temperatures, as in Weider et al. 

(2012a).  We then used the atomdb (version 2.0.0) database and modelling software 

(Harvard Chandra X-ray Center: http://cxc.harvard.edu/atomdb/features_idl_html) to 

generate high-resolution modelled solar spectra with bremsstrahlung continuum and 

superimposed emission lines for equivalent temperatures (the software only tabulates data 

at certain, discrete, temperatures).  The GOES long-wavelength (1–8 Å) channel intensity 

during the flare peaks at 1.37 "10-7 Wm-2
 (see Figure 3).  This occurred simultaneously 

with the peak ratio between the long-wavelength and short-wavelength (0.5–4 Å) 

channels (the ratio has a value of 14.75).  We used these data and the formulation of 

Mewe et al. (1985) to derive a plasma temperature of 5.07 MK.  The GOES data indicate 

that the maximum temperature range during the flare was 4.39–5.53 MK.  These 

temperature estimates are consistent with results from the MESSENGER X-Ray 

Spectrometer, showing that the minimum temperature at which Ca XRF (which we do 

not detect in our XRF spectra) from Mercury’s surface can be detected and distinguished 

from the scattered Ca X-ray background is ~8 MK (Nittler et al., 2011; Weider et al., 

2012b).  We therefore conducted our abundance modelling of the seven ROI spectra at 

assumed flare temperatures (for which we have atomdb spectra) of 4.0 MK (lower-limit), 
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5.0 MK (preferred value), and 6.3 MK (upper-limit).  The atomdb modelled solar spectra 

for these three temperatures are shown in Figure 4. 

 

3. Results 

 

The fitted spectra for each ROI within the ground track are shown in Figure 2.  These 

show the resolved low-energy K! peaks of Mg, Al, and Si (the modelling also includes 

the adjacent K# lines, but these are not resolved here).  The relative variation in the 

strength of these lines is clear.  The resultant Mg and Al abundances for the modelling at 

solar temperatures of 4.0 MK, 5.0 MK, and 6.3 MK are given in Table 2.  We convert 

these results to provide equivalent MgO/SiO2 and Al2O3/SiO2 ratios because oxides are 

more commonly used in geochemical studies.  The values we derive for a solar 

temperature of 5.0 MK are given in Table 3.  The errors we quote in Table 3 represent the 

range exhibited from modelling at the other two solar temperatures (i.e., 4.0 and 6.3 MK), 

which take into account the uncertainty that arises from the absence of a direct solar 

spectrum measurement.  The same ratios are illustrated in Figure 3a in context with lunar 

samples and Lunar Prospector gamma-ray spectroscopy data.  Although a peak at ~1 keV 

(corresponding to Na K!) can be seen in most of the spectra, the abundance results for Na 

are not reported because this line is likely to contain a contribution from scattered solar 

lines (as discussed by Weider et al., 2012a). 

 

4. Discussion 

 

4.1. Variation along the ground track 

 

Figure 5a illustrates the compositional variation amongst the flare ROI.  The MgO/SiO2 

ratios of ROI 1 and 2 are significantly lower than the other regions.  The differences 

between the ROI are better illustrated when their FeO and TiO2 compositions are also 

considered.  The average FeO and TiO2 abundances for each ROI are derived here from 

Clementine multispectral reflectance data using the algorithms of Gillis et al. (2004) and 

Gillis et al. (2003), respectively.  The MgO, Al2O3, TiO2, and FeO contents (all 
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normalised to the average lunar surface SiO2 value of 44.93 wt %; Prettyman et al., 2006) 

for the seven ROI are shown in Figure 6, along with data for mare basalts and ferroan 

anorthosites (FAN) rock samples, average Apollo and Luna soil samples, and regolith 

breccia lunar meteorites.  The combination of datasets in Figure 6 illustrates that the 

majority of the ground track consists of low-Ti basalts, albeit with Al2O3/SiO2 ratios that 

are generally higher than the majority of the sample collection. 

 

ROI 1 is the only region that is clearly distinct from the other low-Ti basalt regions.  It 

has lower MgO/SiO2, FeO/SiO2, and TiO2/SiO2 ratios and thus appears to be more 

representative of feldspathic soils and rock types found in the lunar ferroan anorthosite 

suite (FAN).  This region is almost completely made up of highland material, but in its 

southerly extent it also includes a small part of the mare basalt lava flows in Oceanus 

Procellarum (see Figure 1).  The C1XS-Clementine major element composition for ROI 1 

should reflect a mixture of these two lithologies.  We made simple mixing calculations in 

order to investigate whether a mixture of FAN and mare basalt material can produce the 

composition of ROI 1.  Figure 1 indicates that ROI 1 is >85% highlands (higher albedo, 

and lower FeO and TiO2 content than the mare) and <15% (low-Ti) mare basalt.  Our 

calculations show that in terms of MgO/SiO2, TiO2/SiO2, and FeO/SiO2 its composition is 

roughly consistent with a FAN-low-Ti basalt mixing trend in approximately the correct 

ratio.  However, the same mixing proportion cannot account for the C1XS Al2O3/SiO2 

ratio we derive (Figure 5a). 

 

The apparently low Al2O3/SiO2 ratio for ROI 1 may represent a surficial enhancement 

(C1XS is most sensitive to the top ~100 µm of the surface) of mare material over the 

highlands region due to its transfer in crater ejecta, but this is not indicated by an 

increased FeO content (see Figure 1b and Table 3), and is unlikely on such a large spatial 

scale (e.g., Quaide and Oberbeck, 1975). 

 

An alternative explanation for this apparently aberrant composition may be that it 

represents the earliest analysed part of the flare.  The early stages of solar flares, when the 

temperature of the emitting plasma is rising, are periods dominated by multi-thermal 
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plasma regimes; later stages are characterised by more isothermal regimes (Garcia, 

1994).  More complicated solar modelling than we employed may therefore be required 

to accurately reproduce the incident X-ray spectrum.  However, the GOES data 

(Figure 3) show that the period corresponding to the ROI 1 integration is during a 

relatively steady part of the flare, when the X-ray flux was relatively constant.  It is, 

therefore, unlikely that inaccurate solar modelling (especially given that our errors 

incorporate a large range of solar temperatures) accounts for the low Al2O3/SiO2 ratio of 

ROI 1.  Indeed, Al2O3/SiO2 determined by C1XS for the basaltic regions of the ground 

track are in broad agreement with expectations (see below).  This gives us some 

confidence that the low ratio recorded for ROI 1 is unlikely to be an artefact of the 

calibration. 

 

It is possible that our mixing calculations between FAN and basaltic compositions are too 

simple to explain the composition of ROI 1.  Invoking alternative feldspathic lithologies, 

such as a troctolite (sample 12071) or an impact melt breccia component (either clast-rich 

or clast-poor, as in table A5.39 of Papike et al., 1998), instead of FAN also fails to 

reproduce the C1XS result.  If norite is substituted for FAN, we find that a norite-low-Ti 

basalt mixture, in the ~85:15 ratio required, reproduces the Al2O3/SiO2, FeO/SiO2, and 

TiO2/SiO2 ratios of ROI 1, but gives an MgO/SiO2 ratio that is too high.  Three 

component mixing calculations, using known lunar lithologies, also cannot match the 

C1XS composition for ROI 1. 

 

It appears that the feldspathic (i.e., FAN, anorthositic Mg-suite) rock samples in the 

collection may not be representative (especially in their Al content) of the lunar 

feldspathic highlands region we sample in ROI 1.  Lunar Prospector (L.P.) data 

(discussed further in section 4.3) for this region also have lower Al2O3/SiO2 values than 

the FAN samples; they are generally intermediate between the FAN and mare basalt 

compositions (see Figure 5a).  However, the Al content of the landing site bulk soils from 

feldspathic regions (i.e., Apollo 16 and Luna 20) are lower than the FAN rock samples 

and the compositions of these soils are more consistent with that of ROI 1 (see Figure 6).  

It is likely that these bulk soil samples are more representative of the regolith’s topmost 
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surface, to which the C1XS measurements are sensitive (i.e., the top ~100 µm) than the 

whole rock samples.  It is therefore possible that feldspathic highland soils from 

unsampled regions of the Moon could be a better match for the C1XS-derived 

Al2O3/SiO2 ratio.  Indeed, two lunar meteorite breccia samples (Calcalong Creek and 

MET 01210) thought to be from locations that were not sampled during the Apollo and 

Luna missions (e.g., Hill and Boynton, 2003; Arai et al., 2010; Joy et al., 2010) have Mg 

and Al contents that are a reasonable match to the ROI 1 composition (although we do 

not specifically suggest that either meteorite was launched from the region we observed). 

 

The similarity in the MgO/SiO2 and Al2O3/SiO2 ratios of ROI 1 and 2 (Figure 5a) is 

surprising given the vastly different highlands-mare proportions of their footprints.  

ROI 2 represents material with lower Mg concentrations than the other basaltic regions 

along the ground track.  This could be evidence of lower olivine concentrations, if the 

olivine is forsteritic, at the edge of Oceanus Procellarum than the interior, which would 

support the findings of Lucey (2004).  As illustrated in Figure 1a, ROI 2 also includes the 

youngest lava flow (Hiesinger et al., 2003) within the ground track.  A decrease in Mg 

content, and an increase in Fe, could be expected if the magma source of the local lava 

flows evolved with time, although this cannot be confirmed without direct sampling.  The 

similarity of ROI 1 and 2 could therefore be a coincidence of predominantly low-Al and 

high-Mg feldspathic (ROI 1), and low-Mg and high-Al basaltic (ROI 2) materials. 

 

For all the regions, other than ROI 1, an almost entirely basaltic composition is expected.  

Minor highlands material contributions derived from crater ejecta would be indicated by 

Al2O3/SiO2 ratios that are slightly higher than those of low-Ti basalts (as we see in 

Figure 6).  The C1XS-Clementine compositions are consistent with soil and regolith 

breccia samples representative of the well-mixed uppermost lunar surface. 

 

4.2. Comparison to previously published C1XS data 

 

Figure 5b illustrates the C1XS Oceanus Procellarum results in the context of lunar 

sample data (as in Figure 5a) and in comparison to previously published C1XS results 
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from three flares: (i) 5th July 2009, with a ground track in the southern nearside 

highlands, close to the crater Tycho (Narendranath et al., 2011); (ii) 12th December 2008, 

with a ground track through Mare Serenitatis (Weider et al., 2012a); and (iii) 10th January 

2009, with a ground track through Mare Insularum, Mare Cognitum, and Mare Nubium 

that includes the Apollo 14 landing site (Weider et al., 2012a).  All the C1XS data from 

predominantly basaltic regions are clearly distinct from the southern nearside highlands 

data (Narendranath et al., 2011).  As expected, the highlands regions have much higher 

Al abundances due to their dominantly anorthositic nature.  However, as noted by 

Narendranath et al. (2011), these results are unexpectedly Al-rich compared to samples of 

lunar feldspathic regoliths (Haskin and Warren, 1991; McKay et al., 1991). 

 

Within error, C1XS results from all the basaltic regions have self-consistent MgO/SiO2 

and Al2O3/SiO2 ratios.  One of the objectives for C1XS was to map global variations in 

mare basalt deposits (Crawford et al., 2009), but Figure 5b (see also Figure 1a in Weider 

et al., 2012a) shows that the limited C1XS data are insufficient to meet this aim.  

Although mare basalts can differ widely in their major element composition, especially in 

terms of TiO2, the errors on the C1XS Mg and Al data are too large to see any of this 

variation.  The size of these errors is largely due to uncertainty in the knowledge of the 

incident solar spectrum.  This, in turn, is due to the weak nature of the flares that have 

been analysed, with magnitudes below that from which C1XS was designed to obtain 

data. 

 

4.3. Comparison to Lunar Prospector gamma-ray data 

 

The MgO/SiO2 and Al2O3/SiO2 ratios for L.P. pixels that overlap with the C1XS ground 

track are given in Table 3 and displayed for comparison to the C1XS data in Figure 5a.  

The L.P. data points are coloured to match the C1XS ROI with which they overlap.  The 

Al2O3/SiO2 ratios from the two datasets are generally in good agreement, although the 

C1XS-derived value for ROI 1 is somewhat lower than the L.P. value (see section 4.1), 

and the C1XS value for ROI 5 is higher than the L.P. equivalent.  The MgO/SiO2 values 

from both datasets also tend to agree well, except for ROI 1 and 2 that have significantly 
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lower C1XS-Mg contents (the ROI 5 C1XS value is also slightly higher than the L.P 

value, but they agree within error). 

 

The lack of agreement between C1XS and L.P. results, where it occurs, may be partly 

due to the incomplete overlap of the two sets of footprints, i.e., the smaller C1XS 

footprints do not always encompass the full compositional variations observed by L.P. 

(Figure 1). Inconsistencies between planetary XRF and GRS datasets have been noted 

previously and it has been suggested (e.g., Riner et al., 2008; Lim and Nittler, 2009; 

Narendranath et al., 2011; Weider et al., 2012a) that the two techniques sample 

chemically distinct parts of the regolith due to the different penetration depths of the 

incident solar X-rays (~100 µm) and the galactic cosmic rays (tens of centimetres) that 

stimulate gamma-ray emission.  Our C1XS and L.P. results, however, do not consistently 

agree or disagree, and it is only for ROI 1 that the disagreement is significant for both 

MgO and Al2O3.  We therefore find no evidence for a fundamental discrepancy between 

the two datasets.  Indeed, GRS and XRS results for several major elements (e.g., Al, S, 

Ca) on Mercury are in agreement (Nittler et al., 2011; Weider et al., 2012b; Peplowski et 

al., 2012; Evans et al., 2012).  It is also possible that the L.P. Prettyman et al. (2006) 

abundances of Mg and Al (especially the former) are locally overestimated by up to 

~5 wt% (Wöhler et al., 2011) and may explain at least part of the offset in Mg/Si seen in 

Figure 5a for the low-Mg regions (i.e., ROI 1 and 2). 

 

5. Conclusions 

 

XRF spectra obtained by C1XS on Chandrayaan-1 for a ground track through the western 

part of Oceanus Procellarum have been analysed in this paper and estimates of the 

MgO/SiO2 and Al2O3/SiO2 for seven individual footprints were provided.  Together with 

the two flares presented in Weider et al. (2012a), these analyses represent all the basaltic 

regions sampled by C1XS and, therefore, provide a limited opportunity to investigate the 

major element diversity of mare basalts across the lunar surface. 
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Although Oceanus Procellarum consists of a mosaic of temporally and compositionally 

diverse lava flow units, the regions sampled within the C1XS flare ground track do not 

encompass this full range of diversity (i.e., in TiO2 content).  Small variations in the 

C1XS footprints are better revealed when the C1XS-derived Mg and Al abundances are 

combined with Fe and Ti contents derived from Clementine multispectral reflectance 

data.  Low-Ti basalts comprise the majority of the ground track, with the derived 

compositions generally falling within the range of returned mare basalt samples.  We find 

a low-Mg region at the edge of the mare deposit, which supports previous reports of 

lower olivine contents in this area and may be evidence of local magma sources evolving 

with time. 

 

One ROI at the northern end of the ground track, which incorporates highlands and a 

small amount of basaltic material, has a low Al2O3/SiO2 ratio and a composition that 

cannot be reproduced by simple mixing of returned highland and mare basalt rock sample 

compositions.  Feldspathic regolith samples are more consistent with the composition we 

derived for the highlands region, but inconsistencies between the C1XS results and the 

composition of known lunar samples illustrates the problem with comparing global 

remote sensing datasets to a limited number of samples from relatively small, and 

globally unrepresentative, regions of the Moon.  This highlights the need for additional 

materials to be returned to Earth for analysis from carefully selected places on the lunar 

surface (e.g., NRC, 2007; Crawford et al., 2012). 
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Table 1. Boresight location and phase angle for each of the regions of interest in the C1XS Oceanus 
Procellarum observation. 

 Start End 
ROI Time 

(U.T.) 
Boresight 
longitude 
(°) 

Boresight 
latitude 
(°) 

Phase 
angle 
(°) 

Time 
(U.T.) 

Boresight 
longitude 
(°) 

Boresight 
latitude 
(°) 

Phase 
angle 
(°) 

1 23:07:23 -69.24 66.88 76.93 23:10:59 -69.34 55.99 71.47 
2 23:11:21 -69.35 54.88 70.94 23:13:45 -69.39 47.61 67.63 
3 23:13:45 -69.39 47.61 67.63 23:17:20 -69.45 36.75 63.26 
4 23:17:42 -69.46 35.64 62.87 23:20:30 -69.50 27.15 60.15 
5 23:20:53 -69.50 25.98 59.83 23:21:42 -69.52 23.50 59.18 
6 23:22:04 -69.52 22.39 58.91 23:24:04 -69.55 16.31 57.66 
7 23:24:38 -69.55 14.59 57.38 23:26:03 -69.57 10.28 56.81 
 
Table 2. Modelled abundances (elemental wt%) for Mg and Al, from each of the Oceanus Procellarum ROI 
spectra, with 1 $ fitting errors provided.  Values are given for the best estimate of the flare temperature 
(5.0 MK; million Kelvin) and the upper and lower temperature estimates (4.0 MK and 6.3 MK).  The O and 
Si values are fixed in the modelling at the Lunar Prospector (Prettyman et al., 2006) average lunar surface 
composition values of 44.00 and 21.00 element wt %, respectively. 

 4.0 MK 5.0 MK 6.3 MK 
ROI Mg Al Mg Al Mg Al 

1 2.25 ± 0.50 7.75 ± 1.00 3.00 ± 0.63 9.25 ± 1.13 4.25 ± 1.00 10.50 ± 1.38 
2 2.75 ± 0.38 8.00 ± 0.63 3.50 ± 0.50 9.25 ± 0.63 4.75 ± 0.75 10.75 ± 0.75 
3 5.75 ± 0.38 7.75 ± 0.88 7.75 ± 0.50 9.25 ± 1.00 10.25 ± 0.75 10.50 ± 1.25 
4 4.25 ± 0.25 7.50 ± 0.50 5.75 ± 0.25 8.75 ± 0.63 7.50 ± 0.38 10.25 ± 0.88 
5 5.75 ± 0.50 9.75 ± 0.88 7.75 ± 0.75 11.50 ± 1.13 10.25 ± 1.00 13.25 ± 1.25 
6 4.00 ± 0.25 8.25 ± 0.63 5.25 ± 0.38 9.75 ± 0.63 7.00 ± 0.63 11.00 ± 0.75 
7 4.50 ± 0.38 9.50 ± 0.75 6.00 ± 0.50 11.50 ± 0.88 8.00 ± 0.75 13.00 ± 1.00 
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Table 3. C1XS MgO/SiO2 and Al2O3/SiO2 ratios for the seven regions of interest (ROI) within the Oceanus Procellarum flare.  These values are derived from 
modelling of the spectra at the best temperature estimate of 5.0 MK (see Table 2).  The errors represent the range exhibited from modelling at the lower and 
upper temperature estimates (4.0 and 6.3 MK).  The C1XS values are compared to the Lunar Prospector (L.P.) gamma-ray results (Prettyman et al., 2006) for 
pixels (whose index values are provided in parenthesis next to the L.P. MgO/SiO2 values) that overlap with the C1XS regions (as shown in Figure 1).  The mean 
L.P. ratios for each ROI are calculated from the individual values of the relevant pixels.  The errors given for the mean L.P. values are the standard deviation of 
the individual values.  The Clementine derived TiO2/SiO2 and FeO/SiO2 values (errors quoted are for 1 elemental wt % Ti or Fe) for each ROI are also given, as 
shown in Figure 5 and Figure 6. 

MgO/SiO2 Al2O3/SiO2 ROI 
C1XS L.P. L.P. mean C1XS L.P. L.P. mean 

TiO2/SiO2 FeO/SiO2 

1 0.11 +0.05/-0.03 0.23 ± 0.02 (1609) 
0.20 ± 0.02 (1653) 
0.21 ± 0.02 (1691) 
0.20 ± 0.02 (1692) 

0.21 ± 0.01 0.39 +0.05/-0.06 0.52 ± 0.03 
0.51 ± 0.03 
0.47 ± 0.02 
0.67 ± 0.02 

0.54 ± 0.09 0.01 ± 0.02 0.15 ± 0.02 

2 0.13 +0.05/-0.03 0.22 ± 0.02 (1562) 
0.23 ± 0.02 (1609) 

0.23 ± 0.01 0.39 +0.06/-0.05 0.35 ± 0.03 
0.52 ± 0.03 

0.44 ± 0.09 0.04 ± 0.02 0.34 ± 0.02 

3 0.29 +0.09/-0.07 0.27 ± 0.02 (1386) 
0.29 ± 0.02 (1446) 
0.24 ± 0.02 (1506) 
0.22 ± 0.02 (1562) 

0.27 ± 0.03 0.39 +0.05/-0.06 0.38 ± 0.03 
0.44 ± 0.03 
0.39 ± 0.03 
0.35 ± 0.03 

0.39 ± 0.03 0.05 ± 0.02 0.41 ± 0.02 

4 0.21 +0.07/-0.06 0.21 ± 0.03 (1245) 
0.23 ± 0.03 (1246) 
0.23 ± 0.03 (1317) 
0.30 ± 0.03 (1318) 
0.27 ± 0.02 (1386) 

0.25 ± 0.04 0.37 +0.06/-0.05 0.36 ± 0.03 
0.27 ± 0.03 
0.34 ± 0.03 
0.37 ± 0.03 
0.38 ± 0.03 

0.34 ± 0.04 0.07 ± 0.02 0.40 ± 0.02 

5 0.29 +0.09/-0.07 0.21 ± 0.03 (1245) 
0.23 ± 0.03 (1246) 

0.22 ± 0.01 0.49 ± 0.07 0.36 ± 0.03 
0.27 ± 0.03 

0.32  ± 0.04 0.06 ± 0.02 0.39 ± 0.02 

6 0.20 +0.07/-0.05 0.29 ± 0.03 (1101) 
0.21 ± 0.02 (1102) 
0.23 ± 0.03 (1173) 
0.21 ± 0.03 (1174) 

0.24 ± 0.04 0.41 +0.05/-0.06 0.31 ± 0.33 
0.40 ± 0.03 
0.30 ± 0.03 
0.27 ± 0.03 

0.32 ± 0.06 0.06 ± 0.02 0.44 ± 0.02 

7 0.22 +0.07/-0.06 0.20 ± 0.03 (1029) 
0.28 ± 0.03 (1030) 
0.29 ± 0.03 (1101) 
0.21 ± 0.02 (1102) 

0.25 ± 0.05 0.49 +0.06/-0.08 0.56 ± 0.03 
0.48 ± 0.03 
0.31 ± 0.33 
0.40 ± 0.03 

0.44 ± 0.11 0.06 ± 0.02 0.38 ± 0.02 
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Figure 1.  Maps (simple cylindrical projection) of (a) albedo, (b) FeO wt%, and (c) TiO2 wt% for the region around the Oceanus Procellarum C1XS flare ground 
track.  The abundances shown in (b) and (c) are derived using Clementine multispectral reflectance data according to the algorithms of Gillis et al. (2004) and 
(2003), respectively.  Overlain on the albedo image in (a) is the lava flow mapping of Hiesinger et al. (2003) where units are coloured according to their 
estimated, crater-count age.  The C1XS ground track (bold) is split into seven regions of interest (ROI), which are labelled; also shown are the boundaries (faint 
dotted lines) of the 5° Lunar Prospector gamma-ray dataset pixels (Prettyman et al., 2006) for the area overlapping with the C1XS ground track (Lunar 
Prospector index numbers are given to the right of the panels).  The C1XS footprints have a full width of 50 km and range in length from 385 km for ROI 1 in the 
north to 185 km for ROI 7 in the south. 
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Figure 2.  Background-subtracted C1XS spectra for each of the seven ROI within the Oceanus Procellarum 
flare ground track.  The RAL abundance algorithm fitted model (generated using a 5.0 MK solar model) for 
each spectrum is also shown (smooth bold line), as well as the weighted residual in each case.  The Mg K! 
(1.25 keV), Al K! (1.49 keV), and Si K! (1.74 keV) peaks, which are labelled in (a), are clearly resolved in 
each case.  The more indistinct peak at  ~1 keV (in the spectra of ROI 3 - 7) may be partly due to Na K! 
(1.04 keV), labelled in (d), but likely contains a significant contribution from scattered solar lines (this has 
been discussed previously by Weider et al., 2012); the apparent ‘peak’ below 1 keV is a data processing 
artefact caused by instrument noise.  The weighted residual given in the lower panel for each spectrum is 
the residual of the fitting normalised to the standard deviation of the noise in the spectrum.  This noise 
measure is taken from the continuum between 2.5 and 3.0 keV, and as such represents the native detector 
and photon shot noise close to the region of interest.  Systematic effects dominate the residuals where they 
are high, and are reflected in the overall errors quoted on the abundance ratios. 
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Figure 3.  Geostationary Operational Environmental Satellite (GOES-10) X-ray flux data between 
23:00 U.T. on 10th February 2009 and  00:40 U.T. on 11th February 2009.  The start and end of the flare 
period analysis (see Table 1) are indicated by the dashed lines.  Open symbols: Data from the long-
wavelength channel (1–8  Å); closed symbols: Data from the short-wavelength channel (0.5–4  Å). 
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Figure 4.  Modelled solar spectra from the atomdb (version 2.0.0) database and software.  Spectra 
generated for the three different solar plasma temperatures, 4.0 MK (blue), 5.0 MK (green), and 6.3 MK 
(red), used in the C1XS forward modelling are shown in the 0.5–5 keV energy range. 
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Figure 5.  Plots of MgO/SiO2 versus Al2O3/SiO2 for the C1XS Oceanus Procellarum flare.  In (a) the results 
(coloured diamonds, labelled with the ROI number) are compared to (i) Lunar Prospector (L.P.) gamma-ray 
data (Prettyman et al., 2006) for the pixels (see Figure 1 and Table 3) that overlap with the C1XS ROI 
(circles, coloured to match the appropriate C1XS ROI); (ii) the bulk (average) soil compositions from each 
of the Apollo and Luna returned sample landing sites (Haskin and Warren, 1991; McKay et al., 1991); 
(iii) sample compositions of various lunar lithologies: the mare basalts, ferroan anorthosites (FAN), Mg-
suite and alkali-suite (data from Papike et al., 1998 and references therein, and from the Lunar Mare Basalt 
Database: http://www.nd.edu/~cneal/Lunar-L), whose general fields are labelled; and (iv) compositions for 
lunar meteorite breccias (data from Wieczorek et al., 2006; Joy et al., 2010; Korotev, 2012).  The C1XS 
data points are plotted at the values generated from forward modelling at 5.0 MK; the error bars represent 
the range exhibited by modelling at the lower and upper temperature estimates of 4.0 MK and 6.3 MK (see 
Table 2).  In (b) the C1XS Procellarum flare results (coloured diamonds) are compared to lunar sample 
compositions as in (a), as well as to previously published C1XS results from three other flares: (i) 12th 
December 2008, including its Mare Serenitatis (M.S.) section (Weider et al., 2012); (ii) 10th January 2009 
(through Mare Insularum, Mare Cognitum and Mare Nubium), including its Fra Mauro Formation (F.M.) 
section (Weider et al., 2012); and (iii) 5th July 2009 through the nearside southern highlands (Narendranath 
et al., 2011). 
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Figure 6.  Compositions of the C1XS ROI: (a) TiO2/SiO2 versus MgO/SiO2, (b) TiO2/SiO2 versus 
Al2O3/SiO2, (c) FeO/SiO2 versus MgO/SiO2, and (d) FeO/SiO2 versus Al2O3/SiO2, where the MgO/SiO2 
and Al2O3/SiO2 ratios are the C1XS results presented in this paper and the TiO2/SiO2 and FeO/SiO2 ratios 
are derived from Clementine multispectral reflectance data, with 1 wt % error bars, according to the 
algorithms of Gillis et al. (2003) and Gillis et al. (2004), respectively (these algorithms return values for 
FeO and TiO2, these have been normalised to the fixed SiO2 value used in the C1XS modelling).  These 
values are compared to the compositions of (i) mare basalts (categorized according to their Ti-content, 
following the classification scheme of Neal and Taylor, 1992); (ii) ferroan anorthosite (FAN) samples (data 
taken from Papike et al., 1998 and references therein); (iii) the bulk (average) soils from each of the Apollo 
and Luna returned sample landing sites (Haskin and Warren, 1991; McKay et al., 1991); and 
(iv) compositions for lunar meteorite breccias (data from Wieczorek et al., 2006; Joy et al., 2010; Korotev, 
2012).  The soils from the feldspathic sites, i.e., Apollo 16 (A16) and Luna 20 (L20) are labelled. 

 
 


