39 research outputs found

    A large set of potential past, present and future hydro-meteorological time series for the UK

    Get PDF
    Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM) driven by observed or projected sea surface temperature (SST) and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM). Sets of 100 time series are generated for each of (i) a historical baseline (1900–2006), (ii) five near-future scenarios (2020–2049) and (iii) five far-future scenarios (2070–2099). The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5) and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5) models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months) and shorter-duration high precipitation (1–30 days), the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09) but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and intensity in most regions, highlighting the need for appropriate adaptation measures. Overall, the presented dataset is a useful tool for assessing the risk associated with drought and more generally with hydro-meteorological extremes in the UK

    Land–Atmosphere Interactions: The LoCo Perspective

    Get PDF
    Land–atmosphere (L-A) interactions are a main driver of Earth’s surface water and energy budgets; as such, they modulate near-surface climate, including clouds and precipitation, and can influence the persistence of extremes such as drought. Despite their importance, the representation of L-A interactions in weather and climate models remains poorly constrained, as they involve a complex set of processes that are difficult to observe in nature. In addition, a complete understanding of L-A processes requires interdisciplinary expertise and approaches that transcend traditional research paradigms and communities. To address these issues, the international Global Energy and Water Exchanges project (GEWEX) Global Land–Atmosphere System Study (GLASS) panel has supported “L-A coupling” as one of its core themes for well over a decade. Under this initiative, several successful land surface and global climate modeling projects have identified hot spots of L-A coupling and helped quantify the role of land surface states in weather and climate predictability. GLASS formed the Local Land–Atmosphere Coupling (LoCo) project and working group to examine L-A interactions at the process level, focusing on understanding and quantifying these processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling metrics for different applications and scales and has motivated a growing number of young scientists from around the world. This article provides an overview of the LoCo effort, including metric and model applications, along with scientific and programmatic developments and challenges

    Land-Atmosphere Interactions: The LoCo Perspective

    Get PDF
    Land-atmosphere (L-A) interactions are a main driver of Earth's surface water and energy budgets; as such, they modulate near-surface climate, including clouds and precipitation, and can influence the persistence of extremes such as drought. Despite their importance, the representation of L-A interactions in weather and climate models remains poorly constrained, as they involve a complex set of processes that are difficult to observe in nature. In addition, a complete understanding of L-A processes requires interdisciplinary expertise and approaches that transcend traditional research paradigms and communities. To address these issues, the international Global Energy and Water Exchanges project (GEWEX) Global Land-Atmosphere System Study (GLASS) panel has supported 'L-A coupling' as one of its core themes for well over a decade. Under this initiative, several successful land surface and global climate modeling projects have identified hotspots of L-A coupling and helped quantify the role of land surface states in weather and climate predictability. GLASS formed the Local L-A Coupling ('LoCo') project and working group to examine L-A interactions at the process level, focusing on understanding and quantifying these processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling metrics for different applications and scales, and has motivated a growing number of young scientists from around the world. This article provides an overview of the LoCo effort, including metric and model applications, along with scientific and programmatic developments and challenges

    Historic drought puts the breaks on earthflows in Northern California

    Get PDF
    California's ongoing, unprecedented drought is having profound impacts on the state's resources. Here we assess its impact on 98 deep-seated, slow-moving landslides in Northern California. We used aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow velocities spanning 1944–2015 and compared these trends with the Palmer Drought Severity Index, a proxy for soil moisture and pore pressure that governs landslide motion. We find that earthflow velocities reached a historical low in the 2012–2015 drought, but that their deceleration began at the turn of the century in response to a longer-term moisture deficit. Our analysis implies depth-dependent sensitivity of earthflows to climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows exhibiting less systematic velocity variations. These findings have implications for mechanical-hydrologic interactions that link landslide movement with climate change as well as sediment delivery in the region

    Higher CO<sub>2</sub> concentrations increase extreme event risk in a 1.5 °c world

    Get PDF
    The Paris Agreement1 aims to ‘pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.’ However, it has been suggested that temperature targets alone are unable to limit the risks associated with anthropogenic emissions2, 3. Here, using an ensemble of model simulations, we show that atmospheric CO2 increase - a more predictable consequence of emissions compared to global temperature increase - has a significant impact on Northern Hemisphere summer temperature, heat stress, and tropical precipitation extremes. Hence in an iterative climate mitigation regime aiming solely for a specific temperature goal, an unexpectedly low climate response may have corresponding ‘dangerous’ changes in extreme events. The direct impact of higher CO2 concentrations on climate extremes therefore substantially reduces the upper bound of the carbon budget, and highlights the need to explicitly limit atmospheric CO2 concentration when formulating allowable emissions. Thus, complementing global mean temperature goals with explicit limits on atmospheric CO2 concentrations in future climate policy would reduce the adverse effects of high-impact weather extremes

    The Effectiveness of Legal Safeguards in Jurisdictions that Allow Assisted Dying

    Full text link

    Climate change impacts on the future of forests in Great Britain

    No full text
    Forests provide important ecosystem services but are being affected by climate change, not only changes in temperature and precipitation but potentially also directly through the plant-physiological effects of increases in atmospheric CO2. We applied a tree-species-based dynamic model (LPJ-GUESS) at a high 5-km spatial resolution to project climate and CO2 impacts on tree species and thus forests in Great Britain. Climatic inputs consisted of a novel large climate scenario ensemble derived from a regional climate model (RCM) under an RCP 8.5 emission scenario. The climate change impacts were assessed using leaf area index (LAI) and net primary productivity (NPP) for the 2030s and the 2080s compared to baseline (1975–2004). The potential CO2 effects, which are highly uncertain, were examined using a constant CO2 level scenario for comparison. Also, a climate vulnerability index was developed to assess the potential drought impact on modeled tree species. In spite of substantial future reductions in rainfall, the mean projected LAI and NPP generally showed an increase over Britain, with a larger increment in Scotland, northwest England, and west Wales. The CO2 increase led to higher projected LAI and NPP, especially in northern Britain, but with little effect on overall geographical patterns. However, without accounting for plant-physiological effects of elevated CO2, NPP in Southern and Central Britain and easternmost parts of Wales showed a decrease relative to 2011, implying less ecosystem service provisioning, e.g., in terms of timber yields and carbon storage. The projected change of LAI and NPP varied from 5 to 100% of the mean change, due to the uncertainty arising from natural weather-induced variability, with Southeast England being most sensitive to this. It was also the most susceptible to climate change and drought, with reduced suitability for broad-leaved trees such as beech, small-leaved lime, and hornbeam. These could lead to important changes in woodland composition across Great Britain

    Franchising and Its Aplication in Practice

    Get PDF
    The aim of this thesis is to analyze franchising as a business method and look at it especially from legal point of view. In the first (theoretical) part of the thesis we mention the history of franchising, then we specifie the advantages and disadvanteges of franchising and we also look at the current situation of franchising in the Czech Republic and in the world economy as well. The rest of the theoretical part is devoted to the legal aspects of franchising. The theoretical part of the thesis is followed by the practical part, which describes establishing of a franchising relationship with Vodafone CZ. Emphasis is placed again on legal aspects and much space is devoted to the contract on the future franchising agreement. The goal of this work is to introduce people considering to enter the franchising relationship with the positives and pitfalls, and assist them in deciding whether to enter into this relationship or not
    corecore