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tracks are too zonal over the Atlantic in the CMIP5 and 
AMIP5 ensembles, but better simulated in HadAM3P with 
the exception of being too weak over Western Europe. In all 
cases, the CMIP5 and AMIP5 performances were almost 
identical, suggesting that the biases in atmospheric modes 
considered here are not strongly coupled to SSTs, and per-
haps other model characteristics such as resolution are more 
important. For event attribution studies, it is recommended 
that rather than taking statistics over the entire CMIP5 or 
AMIP5 available models, only models capable of producing 
the relevant dynamical phenomena be employed.

Keywords Event attribution · Dynamics · Mid-latitudes · 
Extreme

1 Introduction

Attributing the changing probability of specific extreme 
events to human induced climate change is an emerging 
field. The ability to quantify human influences on events 
plays a vital role in academic and societal understanding of 
climate change impacts. It is recognised not only in inter-
national climate change initiatives (IPCC, AR5) but also in 
studies addressing wider atmospheric interactions (Hoskins 
and Woollings 2015).

While there are multiple methods used for event attribu-
tion (Uhe et al. 2016, in review), two of the most widely 
used are distributed computing under the Weather@home 
framework (WAH) (Massey et al. 2014) and analysis of 
the CMIP5 ensemble (Lewis and Karoly 2013). CMIP5 
employs the most up-to-date climate models currently 
available, whereas the WAH methodology employs a cli-
mate model that was state-of-the-art 15 years ago. The 
use of an older model is important, because the climate 

Abstract Atmospheric modes of variability relevant for 
extreme temperature and precipitation events are evaluated 
in models currently being used for extreme event attribution. 
A 100 member initial condition ensemble of the global cir-
culation model HadAM3P is compared with both the multi-
model ensemble from the Coupled Model Inter-comparison 
Project, Phase 5 (CMIP5) and the CMIP5 atmosphere-only 
counterparts (AMIP5). The use of HadAM3P allows for huge 
ensembles to be computed relatively fast, thereby providing 
unique insights into the dynamics of extremes. The analysis 
focuses on mid Northern Latitudes (primarily Europe) dur-
ing winter, and is compared with ERA-Interim reanalysis. 
The tri-modal Atlantic eddy-driven jet distribution is remark-
ably well captured in HadAM3P, but not so in the CMIP5 or 
AMIP5 multi-model mean, although individual models fare 
better. The well known underestimation of blocking in the 
Atlantic region is apparent in CMIP5 and AMIP5, and also, 
to a lesser extent, in HadAM3P. Pacific blocking features 
are well produced in all modeling initiatives. Blocking dura-
tion is biased towards models reproducing too many short-
lived events in all three modelling systems. Associated storm 
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experiments are run on volunteer personal computers, 
rather than conventional supercomputers, and so comput-
ing power and memory is at a premium. However, using an 
older model may have disadvantages, and if the model can-
not capture the event of interest for the correct reasons this 
must be reflected in the conclusions of the study.

“All models are wrong, but some models are use-
ful” (Box 1987) and it is up to the scientific community to 
address how useful the model is for event attribution studies. 
Extreme events can be impacted through direct thermody-
namical changes due to increased CO2, which are relatively 
well captured by our latest GCMs (Palmer 2013), or indirect 
changes from the projection of thermodynamics on dynami-
cal modes. It is well known that the latest coupled atmos-
phere-ocean models do not reproduce aspects of the relevant 
dynamical regimes for extreme events, for instance jet lati-
tude variability, and European winter blocking (Davini et al. 
2012; Zappa et al. 2013; Anstey et al. 2013; Harvey et al. 
2014). Therefore the use of an older model for event attribu-
tion, as in WAH, could be called into question. This is espe-
cially true as the WAH model poorly resolves a number of 
key atmospheric regions, including the boundary layer which 
is important for land-surface feedbacks (Jaeger and Senevi-
ratne 2011), and the stratosphere, which is important for win-
ter mid-latitude circulation patterns (Mitchell et al. 2013). 
The comparison is not as clear-cut as suggested, because 
the WAH methodology employs prescribed SSTs, whereas 
the latest CMIP5 models have a coupled ocean. SSTs are 
known to affect surface baroclinicity and heat fluxes (Inatsu 
and Hoskins 2004), so it is reasonable to assume they may 
impact onto certain dynamical modes. Indeed, studies with 
the UK Met Office Hadley centre models (HadGEM) show 
evidence that SST biases can lead to atmosphere biases 
(Keeley et al. 2012; Scaife et al. 2011).

In this study we address the adequacy of event attribu-
tion systems directly, by comparing the simulation of rel-
evant dynamical modes in the CMIP5 model-ensemble and 
the WAH initial condition ensemble. A systematic compari-
son of all diagnostics with the atmosphere-only equivalents 
of CMIP5 (AMIP5) is also provided.

The paper is structured as follows. Section 2 describes 
the data and methods used for the diagnostics. CMIP5, 
AMIP5 and HadAM3P are evaluated in Sect. 3. The impli-
cations for event attribution studies are discussed in Sect. 4, 
and the analysis is summarized in Sect. 5.

2  Data and methodology

2.1  Models

We make use of the 20 CMIP5 models (Taylor et al. 2012) 
with the relevant data available to calculate the diagnostics 

needed for this analysis (see subsequent sections). They 
are, along with their AMIP5 counterparts; bcc-csm1-1, 
BNU-ESM, CanESM2, CCSM4, CMCC-CM, CMCC-
CMS, CMCC-CESM, CNRM-CM5, EC-Earth, FGOALS-
g2, GFDL-CM3, GFDL-ESM2M, HadGEM2-CC, IPSL-
CM5A-LR, IPSL-CM5A-MR, MIROC5, MPI-ESM-LR, 
MRI-CGCM3, MRI-ESM1 and NorESM1-M. So as not 
to give more weight to any model, we take only the first 
ensemble member of each. For the AMIP5 simulations, the 
SSTs are taken from observations derived by merging data 
from the HadISST1 data set and the National Oceanic and 
Atmospheric Administration (NOAA) weekly optimum 
interpolation (OI) SST analysis (Hurrell et al. 2008).

To fully understand extreme weather events a large num-
ber of ensemble members must be simulated (Sippel et al. 
2015). The WAH project allows for distributed computer 
power to run very large numbers of ensemble members 
(Massey et al. 2014) by allowing anyone to run climate 
simulations on their home computer, essentially turning PCs 
into climate simulators. The WAH setup currently employs 
the atmosphere only N96 model with 19 levels in the ver-
tical (L19), HadAM3P, and the science of extreme climate 
events has seen major advances through this system (Stain-
forth et al. 2005; Pall et al. 2011). The use of the HadAM 
versions of the model is required, because the models were 
built to be very memory efficient and so can be run on cur-
rent day home PCs (as is the nature of the WAH project). An 
initial condition perturbation of each single year within the 
period 1985–2010 is performed 100 times. The 1985–2010 
period is used as it is the period covered by the SST driving 
data (Massey et al. 2014). The starting conditions for each 
year are from perturbations of a single simulation that was 
run continuously over the period 1984–2010, thereby allow-
ing for adequate spin up simulations of 1-year.

All model forcing data for the WAH model are described 
in Massey et al. (2014), and are largely the same as those 
recommended for the CMIP5 initiative.

The analysis is compared against the most recent 
European Centre for Medium-range Weather Forecast 
(ECMWF) ERA-I reanalysis (Dee et al. 2011), and inter-
polated to map onto the HadAM3P grid unless otherwise 
specified.

2.2  Jet latitude index

We follow the methodology used in Woollings et al. (2010) 
and the modifications employed by Anstey et al. (2013) to 
identify the lower level eddy-driven jet. Daily-mean zonal 
wind at 850 hPa is used, and is smoothed by calculating a 
5-day running mean. This is then zonally averaged over the 
0–60W region for the Atlantic basin. The location of the 
maximum of this quantity between 15N and 75N is defined 
as the jet latitude.
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2.3  Blocking diagnostic

We use the bi-dimensional blocking definition of Davini 
et al. (2012), which is an extension on the uni-dimensional 
definition by Tibaldi and Molteni (1990). The method is 
based on reversal of the meridional gradient of 500 hPa 
daily geopotential height. Data are initially interpolated on 
a common 2.5 × 2.5 degrees grid. Then, for every grid point 
of coordinates (�0,Φ0) we define:

where Φ0 ranges from 30◦N to 75◦N and �0 ranges from 0◦ 
to 360◦. ΦS = Φ0 − 15◦ , ΦN = Φ0 + 15◦.

Therefore an instantaneous blocking (IB) is identified 
if:

If the IB is larger than 15 ◦ of longitude, the diagnostic 
is deemed to be of sufficient spatial scale to be consid-
ered large scale blocking (i.e. larger than the Rossby 
deformation radius). Finally, a Blocking Event (or here-
after simply block) is defined at each grid box if, within 
a box 2.5 ◦ latitude and 5 ◦ longitude either side of the 
grid point, IB persists for at least 5 days. Further details 
on the blocking detection scheme may be found in ref 
Davini et al. (2012).

2.4  Storm track calculation

The measure of storm activity used here is the standard 
deviation of highpass-filtered daily-mean mean sea level 
pressure, providing a measure of the synoptic scale activ-
ity (Hoskins and Hodges 2002). The filter used is the daily 
difference filter of Chang et al. (2012), which admits most 
power in the 2–8 day band. All data is regridded onto a 
common n32 Gaussian grid prior to this calculation to 
allow a fair comparison. This is the diagnostic used in ref 
Harvey et al. (2014) for CMIP5 models, and therefore 
allows for a direct comparison.

3  Results

The study of dynamical modes from a super-ensemble 
framework is a new direction for extreme event attribu-
tion, as traditionally it is the statistics of climate that are 
analysed. Here, we explicitly consider leading modes of 
atmospheric variability that have an impact on extreme 
events at mid-Northern latitudes.

(1)GHGS(�0,Φ0) =
Z500(�0,Φ0)− Z500(�0,ΦS)

Φ0 −ΦS

,

(2)GHGN(�0,Φ0) =
Z500(�0,ΦN )− Z500(�0,Φ0)

ΦN −Φ0

(3)GHGS(�0,Φ0) > 0 GHGN(�0,Φ0) < −10m/◦lat

3.1  Jet stream

Most of the meteorological and climate patterns in the extra 
tropics are associated with the jet streams, which are 
stronger over ocean basins and so can lead to large model 
biases in those regions. A persistent jet location in winter 
can lead to extreme weather. For instance, Fig. 1 shows dis-
tributions of the average winter (DJF) location of the Atlan-
tic Eddy driven jet.1 The extremely persistent southerly jet 
throughout winter led to the extremely cold winter of 
2009/2010 over Europe due to cold air being advected 
equatorward from high latitudes. In contrast, the extremely 
persistent northerly jet position of 2011/2012 led to a very 
dry winter, particularly over the south of England, because 
less moisture is picked up over the Atlantic. These winters 
are marked on Fig. 1 and are clearly at either extreme of the 
distribution.

On daily timescales the jet location also gives rise to 
extreme weather, and (Woollings et al. 2010) showed that 
the latitudinal position of the eddy-driven component of the 
jet in the Atlantic had a tri-modal structure, with each of the 
tri-modal regions possibly giving rise to different extreme 
weather patterns. This structure is poorly reproduced in 
both CMIP-3 models (Hannachi et al. 2013) and CMIP5 
models (Anstey et al. 2013), although there is evidence 
that the latest Hadley Centre model (HadGEM3) is able to 
capture this (Williams et al. 2015). For CMIP5, in both the 
Atlantic and Pacific basins, the time-mean jet latitude was 

1 Note we use 20CR and NCEP reanalysis in this figure to build a 
large jet latitude sample.

Fig. 1  Winter-averaged jet latitude for two different reanalyses span-
ning from 1871–2012. Two particularly extreme winters over Europe 
are also marked, 2009/2010 and 2011/2012
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1 ◦ too equatorward, on average (Anstey et al. 2013). Here, 
we use exactly the same metric as in these studies to calcu-
late the Jet Latitude Index (JLI, see Sect. 2).

HadAM3P reproduces the distribution of the Atlan-
tic Jet Latitude remarkably well (Fig. 2a). The tri-modal 
structure observed in reanalysis is clearly represented in all 
model ensemble members, with the jet located predomi-
nantly in its central position, then in its northern position, 
then in its southern position. The peak of these modes are 
located at 45N, 58N and 37N, respectively, all of which 

are within 1 ◦ of the reanalysis estimates of jet latitude 
calculated over the same period. The spread in ensembles 
captures the observed distribution, especially given the 
observed tri-modal structure has a measure of decadal vari-
ability in it Woollings et al. (2014). In comparison to the 
AMIP5 and CMIP5 jet latitude distributions (Fig. 2b, c), 
HadAM3P performs particularly favourably. This is inter-
esting because some studies have claimed that in order to 
adequately capture this type of regime behaviour, very high 
resolution models are needed (Dawson and Palmer 2014). 
HadAM3P has a resolution of N96, and there are numer-
ous examples of higher resolution CMIP5 models that do 
not simulate this regime behaviour. The reason for why 
HadAM3P reproduces the tri-modal structure of the jet so 
well would require a more in-depth analysis, but it could be 
linked with balancing the various components of drag from 
different schemes, such as sub-grid orography and gravity 
waves.

The multi-model mean (MMM) of the AMIP5 and 
CMIP5 models shows very similar distributions to each 
other, both of which hint at the tri-modal structure observed 
in reanalysis. However, this tri-modality is really an averag-
ing effect, with few of the CMIP5 and AMIP5 models sim-
ulating all three jet locations accurately in terms of occu-
pancy and latitude. This result was also found in Anstey 
et al. (2013), where they discuss this in more detail.

3.2  Blocking

The eddy driven jet is important in its own right for 
extreme weather Santos et al. (2013), but it can also give 
rise to preferred regimes of blocking (over the Atlantic in 
this instance; Woollings et al. 2010; Davini et al. 2012). 
We first consider the mean biases in blocking frequency. 
The filled contours in the first three panels of Fig. 3 show 
the climatological winter (DJF) blocking frequency for 
HadAM3P, AMIP5 and CMIP5, respectively. The unfilled 
contours show the same quantity but for ERA-I (note that 
the blocking characteristics are very similar for other rea-
nalyses (Barnes et al. 2014)). The bottom three panels 
show the biases. The spatial structure of blocking is well 
captured in these diagnostics, although clearly all three 
modeling initiatives have too little blocking in the Euro-
pean and Pacific sectors. Individual CMIP5/AMIP5 models 
show very different spatial structures, but the multi-model 
mean presented here compares favorably with reanalysis, a 
result also found in Anstey et al. (2013). In that sense, the 
HadAM3P ensemble fares particularly well, as it is a single 
model, and all blocking features are present, although there 
are also examples of CMIP5 models where blocking biases 
are lower (e.g. MIROC5; not shown). One likely cause for 
the European blocking bias is the resolution of orography 
in the models, which (Berckmans et al. 2013) showed to be 

Fig. 2  Winter jet latitude location over the Atlantic for (top) Had-
AM3P, (middle) AMIP and (bottom) CMIP. The solid black line 
shows a Kernel estimate of ERA-I. The dashed black line shows the 
same but for the 3 different modelling initiatives. Thin lines show 
individual model simulations. In the top panel they are all ensemble 
members of HadAM3P, in the middle panel they are individual AMIP 
models, and in the bottom panel they are individual CMIP models
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important. Note that a good reproduction of the JLI does 
not necessarily imply a good reproduction of blocking 
(Davini and Cagnazzo 2014).

The magnitude of the biases in HadAM3P are reduced 
compared with CMIP5 and AMIP5. At its peak, over 
Europe, ERA-I shows that between 10 and 15 % of the 
wintertime is blocked, but the frequency in HadAM3P is 
about half this, and in CMIP5/AMIP5, the frequency is 
only about a third of this. Over Greenland, the HadAM3P 
ensemble simulates blocking reasonably well, but there is 
still a slight negative bias in blocking for the CMIP5 and 

AMIP5 ensemble means. Greenland blocking is associ-
ated with the southern jet regime (Woollings et al. 2010), 
which is better captured in the HadAM3P ensemble than 
the CMIP5 ensemble, and therefore agrees well with the 
biases presented here. Over the Pacific, all modeling initia-
tives capture the structure of the blocking well, but they are 
all biased negative, with HadAM3P not performing as well 
as the CMIP5 or AMIP5 multi model means.

To understand more fully the variability of blocking 
in the individual models and ensembles, the ensemble 
spread of blocking frequency at 60N is compared with 

a

b

c

d

e

f

Fig. 3  The climatology of winter blocking frequency from a Had-
AM3P, b the AMIP5 ensemble and c the CMIP5 ensemble. The 
bias in winter blocking frequency from d HadAM3P, e AMIP5 and 
f CMIP5 with respect to ERA-I. Grey contours show the climatol-

ogy of ERA-I blocking frequency and are identical in all panels, with 
contour spacing at 3 % intervals. The climatology is defined over the 
1985–2010 period
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ERA-I (Fig. 4) shows the percentage of winter blocked at 
all longitudes for the climatology (1985–2010) of ERA-I 
(green) and each modeling initiative (blue), and is identi-
cal to a slice at 60N in Fig. 3. The inter-annual spread in 
ERA-I (green dashed), shows that extreme winters can lead 
to 30 % of the season blocked over Europe, with the peak 
occurring at the Greenwich Meridian. Clearly high levels of 
blocking are also observed over the Greenland and Pacific 
sectors. Over all these sectors HadAM3P captures the vari-
ability of blocking well, and certainly better than the mean 
alone suggests, but the distributions are more heavy-tailed 
in HadAM3P than ERA-I. For instance, at the Greenwich 
Meridian, the ERA-I data are approximately Gaussian, but 
the HadAM3P data are skewed (not shown).

Over the European sector, the peak blocking frequency 
in HadAM3P is around 5 ◦ eastward of ERA-I, which is 
small compared with an order of magnitude larger bias 

(50 ◦) in the AMIP5 and CMIP5 models (Fig. 4 panels b 
and c). Clearly the AMIP5 and CMIP5 models have a real 
issue in capturing European blocking. At the Greenwich 
Meridian, only the most extreme years in AMIP5 and 
CMIP5 data have a similar frequency of blocking as the 
mean of ERA-I (15 % of the winter blocked). Conversely, 
over the Eastern Pacific, the CMIP5 and AMIP5 models 
produce too high a frequency of blocking. In general, cli-
mate models tend to produce a maximum of Euro-Atlantic 
blocking farther east, over Western Russia. This is related 
to jet dynamics and it is clearly visible in Fig. 4.

The analysis so far has concentrated on blocking fre-
quency, but the duration of blocking events can be just 
as important. Blocking duration has been given far less 
attention in the literature than blocking frequency, pri-
marily because sample sizes are not large enough, hence 
a multi-thousand ensemble member setup like WAH is 

a

b

c

Fig. 4  Mid-latitude blocking frequency expressed as a percentage of 
winter blocked at 60N over all longitudes. Blue dashed lines show the 
95 % range in inter-annual, inter-ensemble variability for (top) Had-
AM3P, (middle) AMIP5 and (bottom) CMIP5 (see legend). Green 

dashed lines show the same but for ERA-I. Note the 5 % range is not 
plotted as it is zero in both cases (i.e. over 5 % of winters have no 
blocking). The solid lines show the winter climatology



Assessing mid-latitude dynamics in extreme event attribution systems

1 3

ideal for this analysis. Figures 5 and 6 show the blocking 
duration for the (a) European sector, (b) Greenland sector 
and (c) Pacific sector. The most extreme blocking events 
can last up to 3 weeks in the reanalysis over Europe and 
the Pacific, and up to 2.5 weeks over Greenland. There are 
clear examples in HadAM3P, AMIP5 and CMIP5 where 
this length duration of events is captured, although there 
is a general underestimate of events with extremely long 
durations over Europe. Dunn-Sigouin and Son (2013) 
found a similar result for the annual mean blocking dura-
tion in CMIP5 models. HadAM3P clearly does as well as 
CMIP5 and AMIP5 on average, but all models show a ten-
dency to have too many short events and not enough long 
events.

3.3  North Atlantic Oscillation

In the Atlantic, the positive and negative phases of the 
North Atlantic Oscillation (NAO) are equally as important 

as blocking modes for synoptic variability (Dawson et al. 
2012; Dawson and Palmer 2014). As we are comparing 
the variability of the NAO between different data sets, we 
choose not to use empirical orthogonal functions (EOFs), 
and we choose not to normalize it. Instead we calculate the 
NAO index as an area-weighted average over Iceland minus 
an area-weighted average over the Azores (Stephenson et al. 
2006). This has the disadvantage that if the centers of action 
of the NAO are not the same across data sets, or if they are 
non-stationary in time (Lu and Greatbatch 2002), the mag-
nitude of the dipole may not be well captured. However, the 
advantage is that the variability can be compared between 
different models, and give a physically meaningful inter-
pretation of the pressure gradient over the Atlantic. The first 
EOF in the CMIP5 models also leads to inconsistent modes 
of variability with reanalyses (Davini and Cagnazzo 2014).

Figure 7 (top) shows the distributions of daily-mean 
winter NAO for HadAM3P, ERA-I and (left) AMIP5 and 
(right) CMIP5. The thin lines show individual members of 

Fig. 5  Duration of winter blocking events over the period 1985–2010 in (black) ERA-I, (blue) HadAM3P and (red) AMIP5. Blocking is divided 
into the three principal regions of activity; Europe (15W–25E, Greenland (15W–60W) and the Pacific (150W–150E)

Fig. 6  As in previous figure but for CMIP5
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the ensemble. Clearly most models fail to capture the most 
extreme negative and positive NAO events (more extreme 
than +/− 3 hPa), suggesting some absence or poor repre-
sentation of a physical process during winter. It is likely 
that models fail to capture these extreme events for differ-
ent reasons (e.g. the presence or not of well resolved strato-
spheric connections, Mitchell et al. 2013; Seviour et al. 
2016). However, it does seem that the NAO power across 

all timescales is well captured by HadAM3P, AMIP5 and 
CMIP5 (Fig. 7, bottom).

3.4  Storm tracks

Extratropical cyclones propagate across the North Atlan-
tic bringing extreme winds and rainfall to western Europe, 
however, the nature of the propagation is dependant on the 

Fig. 7  Daily NAO variability during winter (DJF) expressed as (top) 
a PDF, and (bottom) a power spectral density. (left) A comparison of 
HadAM3P with AMIP5, and (right) a comparison of HadAM3P with 

CMIP5. See legend for descriptions of coloured lines. The 5–95 % 
spread is plotted for the power spectra
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phase of the NAO. It is therefore insightful to assess the 
storm tracks, which are known to have large biases over the 
Atlantic in current generation climate models (Harvey et al. 
2014). Figure 8 (left) shows the mean storm track magni-
tude for (top) HadAM3P, (middle) CMIP5 and (bottom) 
AMIP5 in the coloured contours, with the same quantity 
from ERA-I overlaid as gray line contours. The biases are 
shown in the right panels. The largest biases in HadAM3P 
(Fig. 8 top, left) are at high latitudes (poleward of 70N), 
where storm track density is low, and as such the biases 
are not so important. Note also that MSLP is biased to high 

latitudes relative to wind. At mid-latitudes the storm track 
biases are small, especially over the Euro-Atlantic region. 
Crucially, the storm tracks are not too zonal, which is often 
the case in current generation climate models (Harvey 
et al. 2014; Zappa et al. 2013), including the AMIP5 and 
CMIP5 models analyzed here (Fig. 8 middle and bottom). 
For AMIP5 and CMIP5, perhaps the largest biases in storm 
track density are over the western coast of America and 
Canada, with the biases being larger in AMIP5 over CMIP5. 
For HadAM3P, there is no bias in this region, although there 
is a small negative bias over Eastern America.

CMIP5 AMIP DJF storm track
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Fig. 8  (left) The mean DJF storm track for (top) HadAM3P, (mid-
dle) CMIP5 and (bottom) AMIP5. (right) The bias relative to ERA-
Interim (years 1979–2013). Grey contours show the ERA-Interim 

climatology. The storm track measure is the variance of time-filtered 
MSLP, where a daily-difference time filter is used, and the variances 
are converted to std dev for plotting (units: hPa)
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4  Implications for event attribution studies

In the previous section the relevant dynamics relating to 
extreme weather events was assessed, and it is reasonable 
to ask, given the models’ performances, what are the impli-
cations for past and future event attribution studies.

Often when changes in climate are considered the 
dynamical and the thermodynamical components are spo-
ken of separately. Strictly this dichotomy is incorrect, 
because in general a change in dynamics can only be 
bought about by changes in thermodynamics2 (yet the 
inverse is not true), so there is no such thing as a purely 
dynamical change. It is, however, sometimes convenient to 
think of changes as either dynamical, or thermodynamical, 
and this is especially true for regional climate change.

To take a simple theoretical example of the dynamics-to-
thermodynamics interplay; for instance, as the troposphere 
warms, the depth of the troposphere, H, increases. This 
decreases the length scale of streamlines, L, for meridi-
onal displacements of stationary waves due to orography of 
depth h, according to the following relationship:

where f is the Coriolis parameter and β is the beta param-
eter. So the thermodynamic expansion (∆H) leads to a 
change in wave dynamic properties (∆L). Hoskins and 
Woollings (2015) present similar theoretical arguments 
for changes in the wavelength and response to low-level 
heating of stationary waves. Given that for many dynami-
cal examples the theory of how these may change under 
climate change is well established, it is natural that event 
attribution will use the theory and focus more and more on 
changes in extreme events from a dynamical perspective, 
especially for low signal-noise processes which may lead 
to large regional climate change (e.g. changes in block-
ing). For instance ref. Christidis and Stott (2015) attrib-
uted changes in Z500, ref. Mitchell et al. (2016) attributed 
changes in summer blocking, and ref. Schaller et al. (2016) 
attributed changes in regime occupancy.

In this study we have assessed whether models used 
in event attribution studies are capable of simulating rel-
evant modes of variability for extreme events. Focusing 
on potential issues in attribution studies, notably there are 
still biases with models reproducing the mean frequency 
of winter blocking over Europe, but, reassuringly, Had-
AM3P has clear examples of ensemble members that are 
as extreme as the observed years. This is not the case 
for CMIP5, however, and it is recommended that event 

2 Counterexamples exist in palaeoclimate, such as the mechanical 
forcing of the ice sheet, but we are not aware of any in the anthropo-
genic context.

(4)∆L ∼
fh

β
.
1

∆H
,

attribution studies of winter blocking should exclude mod-
els that poorly represent blocking in this region, although 
one would worry about sample sizes for such an analysis. 
Likewise the duration of blocking events over Europe is 
slightly underestimated, which would have implications 
for extended cold snaps and as such health implications. 
Both HadAM3P and CMIP5 models have examples of 
long-duration events, however, without knowing explic-
itly what causes this bias, event attribution statements in 
this region are less reliable than in other regions associated 
with these phenomena.

Likewise storm track biases were varied in CMIP5 and 
HadAM3P, and event attribution studies should be cau-
tious when studying extreme precipitation events in these 
large bias areas. For instance, in HadAM3P there is a 
large negative bias in storm tracks at high latitudes (pole-
ward of 75N). However, this is also a region of low storm 
track density, as well as being sparsely populated region of 
the world. As such, it is less likely that localised extreme 
events are relevant in that region.

Certain extreme events are linked to jet location and 
magnitude. For instance the 2013/2014 flooding in the 
UK was linked to a strengthened jet causing more per-
sistent storms to track across the Atlantic (Huntingford 
et al. 2014). In HadAM3P the distribution of Atlantic jet 
location is very well simulated, implying that attribution 
statements about this type of event are more reliable. 
However, this is not the case for CMIP5 models in gen-
eral, where the jet locations are not well captured, and 
also the Euro-Atlantic storm tracks are too zonal. As an 
example, Fig. 9 shows return period curves of zonal wind 
at 850 hPa over the North Atlantic for (blue) HadAM3P 
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Fig. 9  Return time curves for daily winter zonal wind at 850 hPa 
over the Atlantic (0–60W, 55–60N) for the period 1985–2010. The 
comparison is between HadAM3P and CMIP5 models
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and (green) CMIP5 data. Such analyses are widely used 
in attribution studies by comparing the return period of 
a particular event under different forcing scenarios. Tak-
ing an example event of a return time of 1 winter, we can 
see that the two methods give different spreads in return 
values. For the HadAM3P method this corresponds to 
zonal winds of 18–22 ms−1, but for the CMIP5 method 
it corresponds to 13–23 ms−1 . It is however reassur-
ing to note that the multi-model mean of the HadAM3P 
and CMIP5 ensemble are very similar. Clearly there are 
at least two of the CMIP models which do not simulate 
zonal winds as extreme as the others, calling into ques-
tion whether these models would be suitable for this 
analysis. Given that the HadAM3P model simulates the 
location and magnitude of the eddy driven jet well with 
respect to ERA-I reanalysis (Fig. 2), this is an example of 
where we may have more confidence in attribution with 
one event attribution system over another, and has par-
ticular implications for, e.g. wind storms impacting West-
ern Europe. It is therefore recommended that models be 
selected before event attribution analyses are performed, 
based on how well they reproduce the required underly-
ing mechanisms. The choice of what classes as ’good’ is 
of course subjective, but model metrics have been devel-
oped and various decision flows established for model 
inter-comparison projects (Waugh and Eyring 2008; 
Knutti et al. 2010; Knutti 2010). The model selection 
employed by attribution studies needn’t be any differ-
ent from the model inter-comparison projects, although 
the model selection criteria should be based on extreme 
event-relevant metrics.

5  Summary

In this paper, relevant modes of atmospheric variability for 
winter extreme temperature and precipitation events have been 
assessed in models used for extreme event attribution studies 
(primarily HadAM3P and CMIP5 models). Clear implications 
for past and future event attribution have been laid out.

We have concentrated on winter mid-latitudes in the 
Northern Hemisphere, the focus of many event attribution 
studies. While much analysis has been performed on the 
atmospheric dynamical modes in CMIP5 models, very little 
has been performed in any systematic way for HadAM3P. 
As a by-product to this assessment, we have implicitly 
assessed:

1. The interplay between model uncertainty (from 
CMIP5) and initial condition uncertainty (from Had-
AM3P).

2. The constraint that SSTs have on atmospheric modes 
of variability.

Conclusions specific to the two ensembles are as follows:
HadAM3P As a whole, HadAM3P simulates the modes 

of variability considered here well, especially in com-
parison with CMIP5 models either in coupled or AMIP 
mode. Given this skill, and given the ability under WAH 
to reproduce super-ensembles (∼10, 000), the potential to 
further understand the dynamics of extremes is particularly 
noteworthy.

The tri-modal structure of the Atlantic jet is remark-
ably well reproduced in HadAM3P, and is notoriously hard 
to capture in our latest generation models (Anstey et al. 
2013). The variability of blocking frequency is well cap-
tured in all regions, with many examples of extreme years 
in HadAM3P of similar magnitude to the extreme years 
in ERA-I reanalysis. However, there is a bias in the mean 
blocking frequency over Europe, linked to too few high-
duration blocking events in HadAM3P (although examples 
of extreme-duration blocking events are still found).

The storm track activity is well reproduced in the model, 
and the well known too zonal storm track issue in models is 
not apparent in HadAM3P. However, there are small nega-
tive biases over Western Europe and Eastern America.

CMIP5 The multi-model mean of CMIP5 fares less well 
in simulating the relevant atmospheric modes for extreme 
events than HadAM3P. The tri-modal structure of the 
Atlantic jet is not reproduced in many of the models, and 
even then only vaguely resembles the ERA-I calculated 
distribution. Extreme blocking events (in terms of dura-
tion of winter blocked) over the European sector are nota-
bly absent, with the top 5 % of blocking events from the 
CMIP5 models only matching the mean of ERA-I. Over 
the Pacific the CMIP5 models perform far better, and rep-
resent the variability and duration of winter blocking well 
(and more accurately than HadAM3P). Finally, on average, 
the CMIP5 models have too high a density of storm tracks 
over Western America and Canada, and too zonal a jet over 
the Euro-Atlantic region.

Our results show a need for event attribution studies to 
perform some initial ‘suitability’ tests on their chosen event 
attribution system. It may be that one system is more suit-
able than another, or it may be that no systems can capture 
the relevant dynamics of the event, in which case attribu-
tion may not be possible. For systems where multiple dif-
ferent models are used, such as the CMIP5 methodology, 
some models may be found to be inadequate, and should 
therefore be excluded from the analysis.
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