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Summary19

The Paris Agreement1 aims to ‘pursue efforts to limit the temperature increase to 1.5◦C above pre-20

industrial levels.’ However, it has been suggested that temperature targets alone are unable to limit the21

risks associated with anthropogenic emissions2, 3. Here, using an ensemble of model simulations, we22

show that atmospheric CO2 increase - a more predictable consequence of emissions compared to global23

temperature increase - has a significant impact on Northern Hemisphere summer temperature, heat stress,24

and tropical precipitation extremes. Hence in an iterative climate mitigation regime aiming solely for a25

specific temperature goal, an unexpectedly low climate response may have corresponding ‘dangerous’26

changes in extreme events. The direct impact of higher CO2 concentrations on climate extremes therefore27

substantially reduces the upper bound of the carbon budget, and highlights the need to explicitly limit28

atmospheric CO2 concentration when formulating allowable emissions. Thus, complementing global29

mean temperature goals with explicit limits on atmospheric CO2 concentrations in future climate policy30

would reduce the adverse effects of high-impact weather extremes.31
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Main Body32

The long-term goal of the Paris Agreement1 aims to strengthen the global response to the threat of33

climate change by: ‘Holding the increase in the global average temperature to well below 2◦C above34

pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5◦C above pre-industrial35

levels, recognizing that this would significantly reduce the risks and impacts of climate change.’ To36

achieve the warming goal, the agreement implements an explicit temperature-based goal-driven regime,37

with which mitigation efforts are intended to be revised to over time. Therefore, no explicit long-term38

emissions targets are directly associated with the agreement aims, aside from the need to ultimately39

achieve a balance between net anthropogenic greenhouse gas sources and sinks into the atmosphere4.40

Since the Paris Agreement, there has been a call for research into impacts associated with 1.5◦C and 2◦C41

globally-average surface temperature anomalies5, 6. However, previous work2, 3 suggests global mean42

temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions, and43

that global mean temperature is not the sole driver of changes in temperature and precipitation patterns7–11
44

and extremes12–14.45

Here we isolate the direct effect of CO2 concentration, investigating the difference between estimated46

likely (>66% probability that the value will lie within this range) upper and lower bounds on CO247

concentrations leading to 1.5◦C of global warming in 2100 for adaptive pathways to meet the Paris48

Agreement goals under climate response uncertainty15. We define the direct effect of CO2 concentration49

as all the effects of CO2 on climate beside those occurring through ocean warming but including feedbacks50

over land (e.g. from soil moisture), therefore excluding most of the global temperature change since51

the latter is to a large extent determined by ocean temperatures. We run five Atmospheric Model52

Intercomparison Project (AMIP) style ensembles16 with HadAM3P and MIROC5: a present day ensemble53
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(2006-2015); three ensembles with sea surface temperature (SST) levels equivalent to 1.5◦C global mean54

warming relative to 1850-1900 with low, best-estimate and high CO2 concentrations; and a 2.0◦C ensemble55

with best-estimate CO2 concentrations and SSTs for a 2.0◦C world. By considering the difference between56

high and low CO2 concentration ensembles, we find substantial differences in the patterns of change in57

temperature and precipitation, pointing to an increase in extreme event likelihood. These differences could58

have important consequences if international climate policy does not seek to limit CO2 concentrations59

and instead concentrate exclusively on the global mean temperature target. This idealised experimental60

design helps focus on the risks associated with different atmospheric CO2 concentrations, consistent with61

different climate responses, after global temperatures have stabilised at approximately the same level. We62

also compare the results from HadAM3P and MIROC5 to results from CAM4 (see Methods for setups),63

drawing similar conclusions.64

The differences in global mean temperature and precipitation between the five ensembles are presented65

in Table S1. Global mean temperature changes between the 1.5◦C ensembles are small, as expected66

due to the prescribed SSTs, with only a 0.12◦C difference between low and high CO2 ensembles in67

HadAM3P and 0.11◦C in MIROC5. Over land, these changes are slightly more pronounced. To correct68

for the differences in global mean temperature between low, best-estimate and high ensembles, we use a69

simple linear regression model (see Methods for details), fitting changes in variables to changes in global70

mean temperature and radiative forcing. Using the regression coefficients and global mean temperature71

difference between 1.5◦C ensembles, we then adjust all variables to have a value associated with the global72

mean temperature in the best-estimate ensemble. This means all differences between the 1.5◦C ensembles73

are due to the direct radiative forcing effect from differing CO2 concentrations. All variables and figures74

(unless specified) for the rest of this study use the corrected ensembles (i.e. with the effect of the global75

mean temperature differences between the 1.5◦C ensembles removed). The spatial patterns of change in76
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HadAM3P due to the direct radiative forcing effect are shown for several variables in Fig. S1 (and without77

temperature correction in Fig. S2). It may be argued that the SST pattern and CO2 concentrations are78

physically inconsistent with each other, but the simulated atmosphere is still physically consistent within79

the model with its SSTs and CO2 boundary conditions. The top of atmosphere radiative imbalances in our80

ensembles lie within the range of imbalances in the historical AMIP simulations (see Fig. S3), and so any81

conclusions we draw possess the same caveats as conclusions drawn from using the AMIP simulations.82

We consider three extreme indices: T X90p, the number of days per season exceeding the 90th83

percentile of daily maximum temperature in the present day ensemble; WBGT 95p, the number of degree84

months per year above the 95th percentile of wet-bulb globe temperature (WBGT) in the same month85

of the present day ensemble; and R95p, the number of days per season where precipitation exceeds86

the 95th percentile of daily precipitation on wet days (>1mm/day) in the present day ensemble (see87

Methods for details). Differences between the high and low CO2 concentration ensembles are shown for88

HadAM3P, MIROC5 and CAM4 in Figs. 1, S5 and S7 respectively (and without temperature corrections89

in Figs. S4, S6, S8). The stippling shows differences discernible against the decadal variability in the90

model (see Methods for details). We test for statistical significance at the 10% level using a two-sample91

Kolmogorov-Smirnov test; the hatching in Fig. S9 indicates significant changes in extreme indices in92

HadAM3P (maps for the other ensembles are not shown, but display similar hatching regions). Due to93

large ensemble sizes, we find significant changes across large regions of the globe. There is considerable94

spread in extreme indices in the CMIP5 models at the same temperatures2. We sub-sample the CMIP595

ensembles, computing the JJA TX90p when each model reaches 1.5◦C under the RCP8.5 scenario. The96

differences in the spatial patterns of TX90p between models with low and high global mean temperature97

sensitivity to carbon emissions (see Fig. S10), support our findings that increases in CO2 concentrations98

lead to increases in extreme temperature.99
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The WBGT, a heat stress metric and proxy for human discomfort17, 18, allows us to better quantify the100

impact of temperature extremes on humans. We consider changes in the extreme metric WBGT 95p due101

to increases in CO2. In JJA, increases are co-located with high population density areas in the Eastern102

US seaboard, central Europe, the Arabian Peninsula and North-East China and Korea. These regions are103

likely to experience increases in likelihood and severity of humid heatwaves under climate change19. Our104

results suggest these increases may be partly due to differences in atmospheric composition. Increases in105

population over the coming decades, combined with rising CO2 concentrations, mean more people will be106

exposed to the extreme changes in WBGT20 with potential economic impacts21 and potentially drastic107

societal implications22.108

Area mean changes from present day are summarized in Fig. 2 (and without temperature correction in109

Fig. S11). Global mean changes in temperature and precipitation are shown, as well as land averaged110

Northern Hemisphere extratropical (NH ET), 30◦N-90◦N, and tropical, 30◦S-30◦N, JJA changes for the111

mean and extreme indices. It is clear from the differences between high and low CO2 ensembles that the112

area averaged changes in JJA means and extremes are highly significant in both the NH extratropics and113

tropics for WBGT 95p and T X90p. R95p changes are significant in HadAM3P (excluding the extreme114

NH extratropical precipitation), but not in MIROC5.115

We compare the difference in extreme indices due to the range in CO2 concentrations consistent116

with 1.5◦C warming scenarios with the difference between the best-estimate CO2 concentration cases117

at 2.0◦C and 1.5◦C global mean warming. The CO2 induced differences as a percentage of the global118

mean warming induced differences for HadAM3P are shown for T X90p (Fig. 3a,b) and WBGT 95p119

(Fig. 3c,d) (and without temperature correction in Fig. S12). In JJA, over the NH midlatitudes, there are120

regions where the differences due to CO2 are greater than those due to the extra 0.5◦C of global mean121

warming. For R95p, we show the zonally averaged differences for ensemble means in the solid colours,122
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and individual ensembles member differences in the light colours (Fig. 3e,f) (and without temperature123

correction in Fig. S12). In both DJF and JJA, the differences due to CO2 in the tropics are on the same124

order of magnitude as the differences due to the extra 0.5◦C of global mean warming. The importance of125

CO2 on driving tropical extreme precipitation is contrary to the extratropics where global mean warming126

is the main driver23. The comparisons for MIROC5 (Fig. S13, and without temperature correction in Fig.127

S14) vary from HadAM3P, with slightly lower magnitude, but nevertheless show substantial changes due128

to CO2 concentration differences compared to differences due to the extra 0.5◦C of global mean warming.129

These results highlight that increases in extreme indices due to the direct effect of CO2 have important130

implications on the upper limit of CO2 that can be emitted in order to limit changes in specific costly131

climate extremes. If we accept a level of extreme index increase consistent with 1.5◦C of global mean132

warming associated with the increased CO2 in the best-estimate climate sensitivity case, we can ask what133

the upper bound of the carbon budget is that will keep extreme event likelihoods at this level. This will134

reduce the upper bound of the carbon budget, which is currently set by the uncertainty in the CO2 emission135

levels which lead to 1.5◦C of global mean warming. This allowable emissions uncertainty arises due to136

the global mean temperature response uncertainty24.137

Using the simple regression model (see Methods for details), we calculate how each extreme index138

varies with global mean temperature and CO2 concentration. Taking the extreme index value at 1.5◦C of139

global mean warming in the best-estimate climate sensitivity case, we can then compute pairs of values of140

global mean temperature and CO2 concentration resulting in that same extreme index value. This allows us141

to determine an upper bound for the carbon budget consistent with this extreme index change, as illustrated142

by Fig. 4 (see caption for details). For T X90p (Fig. 4a), the decrease in the upper bound of the carbon143

budget is from 569 to 471 GtC, giving a 23+11
−12% decrease in the uncertainty range of the carbon budget.144

For WBGT 95p and R95p the new upper bounds are 450 GtC and 438 GtC, and reductions in uncertainty145
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are 28+6
−9% and 31+13

−17% respectively (Figs. 4b,c). Reductions due to regional WBGT 95p changes are146

shown in Fig. S15. Besides Western Africa, all regions display a decreased upper bound. We stress that147

these reductions in the carbon budget are only estimates based on the results from the three models. The148

use of a larger number of climate models run under a similar experiment, if they were available, would149

allow us to quantify the reduction more accurately. With the full range of CMIP5 models, there would be150

a greater spread in the uncertainty of the new upper bound of the carbon budget. However, based on the151

magnitude of the reduction in the upper bound of the carbon budget from these three models, it seems152

likely that the direct CO2 effect is important, and should be taken into consideration when formulating153

carbon budgets to avoid any given level of climate impacts on extremes.154

We demonstrate significant differences in temperature and precipitation extremes between the higher155

and lower likely CO2 concentrations in a 1.5◦C world. This highlights the importance of direct, local,156

CO2 forcing effects on regional climates and extremes. We must acknowledge these effects so that we157

can avoid ‘dangerous’ changes in extremes which, in the context of the Paris Agreement, are defined as158

impacts beyond those expected at 1.5◦C. It also makes clear that impacts on extremes in a world warming159

past 1.5◦C would be different from those after stabilising at 1.5◦C.160

Differences in extremes at the same global mean temperature, due purely to differing CO2 concentra-161

tions, directly impact the use of the pattern scaling technique25. These differences provide compelling162

evidence that when using pattern scaling, we must account for CO2 concentration and not just the changes163

in global mean temperature (which is the dominant method used in academic and policy work).164

This study supports findings26 that geoengineering schemes aimed at reducing the global warming im-165

pacts without reducing CO2 concentration would not fully mitigate changes in extremes whose likelihoods166

have increased by the direct effect of increasing CO2 concentrations.167

Whilst it is important to note these findings are from only three models, the use of large ensembles168
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and the statistical significance of the differences give weight to the reliability of our findings. Previous169

work11 shows the rapid regional precipitation response to increases in CO2 is robust among CMIP5170

models. Further work must be carried out to explore the spatial patterns and magnitudes of temperature171

and precipitation differences in other models to better quantify how extremes change with different172

atmospheric CO2 concentrations. Despite this, it is clear that complementing global mean temperature173

goals with explicit limits on atmospheric CO2 concentrations would reduce the risk of unexpectedly high174

changes in high-impact weather extremes.175
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Figure captions282

Figure 1. Changes associated with CO2 concentration at 1.5◦C warming in HadAM3P with temperature

correction applied. Differences in T X90p (a, b), WBGT 95p (c, d) and R95p (e, f) between high and low

CO2 forced runs. Stippling indicates statistical significance at the 10% level when testing for discernible

impact (i.e. with an effective sample size of one, see Methods for details). Note the reversal of the

colourbar for e, f.
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Figure 2. Area averaged differences associated with CO2 concentration at 1.5◦C warming with

temperature correction applied. Whisker plots show the difference in indices between the low, best

estimate and high CO2 ensembles relative to the present day ensemble (solid lines: HadAM3P, dashed

lines: MIROC5). Crosses mark the 50th percentile and the caps mark the 10th and 90th percentiles.

Global mean temperature differences are calculated averaged over all seasons and the whole globe.

‘NH ET’ indices are calculated for JJA 30◦-90◦N land,‘TROP’ indices are calculated for JJA 30◦S-30◦N

land. Precipitation anomalies are expressed as the mean change at each gridpoint.
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Figure 3. Comparison of changes due to CO2 concentration with changes due to 2.0◦C to 1.5◦C

warming difference in HadAM3P. Differences between high and low CO2, with temperature correction

applied, as a percentage of the difference between 2.0◦C and 1.5◦C ensembles for T X90p (a, b) and

WBGT 95p (c, d). The differences between high and low CO2, and the differences between 2.0◦C and

1.5◦C for R95p (e, f). Plots show the zonally averaged mean ensemble R95p changes in solid colours, and

individual ensemble members in the light colours.
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Figure 4. The reduction in the upper bound of the

carbon budget. T X90p (JJA 30◦-90◦N land) (a),

WBGT 95p (JJA 30◦-90◦N land) (b) and R95p (JJA

30◦S-30◦N land) (c). The pink plume shows the 5-95

percentile of the CMIP5 response under all four

RCPs relative to the 2006-2015 mean. The black

dashed line marks the warming from the present

decade equivalent to 1.5◦C of mean global warming

from the pre-industrial period (1850-1900). Dots

indicate the warming observed in our best-estimate

CO2 concentration ensemble for each model

(corresponding to the RCP2.6 2090-2099 mean).

Curves show lines of constant extreme index,

calculated from the regression model, with 5-95%

uncertainty plumes. Red dashed lines mark the upper

and lower uncertainty bounds of the carbon budget.

The yellow dashed line is the new multi-model mean

upper bound in the carbon budget, with uncertainty

plume given by the pink plume’s intersection with

the model 5th percentile that gives the largest

reduction in the carbon budget, to the intersection

with the model 95th percentile that gives the smallest

reduction in the carbon budget.
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Methods283

Experimental design284

For this study, we make use of three climate models: HadAM3P, MIROC527 and CAM428. HadAM3P285

is an atmosphere only, medium resolution, GCM developed by the UK Met Office. It is based upon the286

atmospheric component of HadCM329, 30. An improved version of HadAM3P using a more sophisticated287

land-surface scheme is used here31. The model has been used extensively in the study of extreme events.288

We run HadAM3P using the large-ensemble capability provided by the climateprediction.net volunteer289

computing network31, 32, where members of the public are performing multi-thousand-member initial290

condition ensemble general circulation model (GCM) simulations at 1.25◦ x 1.875◦ resolution. We291

compare the results from HadAM3P to MIROC5 and CAM4 run at 1.4◦ x 1.4◦ and 1.9◦ x 2.5◦ resolutions292

respectively.293

The experimental setup follows the Half a degree Additional warming, Prognosis and Projected294

Impacts (HAPPI; www.happimip.org) design33. Forcing conditions are as in the DECK AMIP design,295

including SSTs and sea ice16. The HAPPI experiments are designed to simulate conditions in the present296

decade (2006-2015), and 1.5◦C and 2.0◦C warmer than pre-industrial (1861-1880) conditions. SSTs297

for the 1.5◦C case are calculated by adding to the observed 2006–2015 SSTs a change in SST (∆SST)298

between the decadal average of the modelled 2006–2015 period and the decadal average of the modelled299

1.5◦C world over 2091–210033. Hence the SST patterns are still time varying because they are based on300

the 2006–2015 observations, but they have an additional warming added to them. As CMIP5 historical301

simulations stopped in 2005, the decadal average of the 2005–2015 SSTs is estimated from RCP8.5302

simulations, as this is the scenario that is closest to observations over this period. The decadal average of303

the 2091–2100 SSTs is estimated from CMIP5 RCP2.6 simulations. The process to calculate the 2.0◦C304
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SST pattern is similar and outlined in detail in reference [33]. Here we use the HAPPI Tier 1 experimental305

design33, which uses the multi-model mean patterns, thus across all three models used in this study all306

the present day ensembles are run with an identical present day SST pattern, all the 1.5◦C ensembles are307

run with an identical 1.5◦C SST pattern, and all the 2.0◦C ensembles are run with an identical 2.0◦C SST308

pattern. Full details are discussed in reference [33].309

For HadAM3P, we run five ensemble experiments, each over a 10-year period. A present day ensemble310

is run using HAPPI present day setup33 over the period 2006-2015 with an average CO2 of 390.4ppm (90311

ensemble members). A 1.5◦C ensemble is run using HAPPI 1.5◦C setup33, which uses the RCP2.6 forcing312

scenario boundary conditions from the last decade of the 21st century, with CO2 fixed at 423.1ppm (71313

members). Two further ensembles are run using the 1.5◦C setup33, but with CO2 fixed at 395.8ppm and314

550.0ppm (76 and 88 members) to represent the lower and higher likely CO2 concentrations averaged over315

2091-2100 in adaptive pathways that succeed in achieving warming below 1.5◦C in 2100 for the assessed316

ranges of climate response uncertainty15. The range of CO2 concentration is intended to illustrate the317

scale of the difference in concentrations that may be consistent with a 1.5◦C world. Thus the range of318

concentrations used does not affect the qualitative results of changes in extremes. As the concentrations are319

only used to fit the regression model and not calculate changes in the carbon budget directly, the reduction320

in the upper bound of the carbon budget is not influenced by the exact choice of CO2 concentrations.321

It is however influenced by the selection of models used in the study, due to their different climate322

sensitivities. A similar range in concentrations can be obtained by converting the spread of individual323

model temperatures in CMIP5 under RCP2.6 at the end of the century (2081-2100) to a concentration324

range. The change in temperature at the end of the century from the pre-industrial baseline stated in AR524
325

is 1.6◦C with a standard deviation of 0.4◦C and 5-95% uncertainty range of 0.9-2.3◦C. The radiative326

forcing averaged over 2081-2100 is 2.60 Wm−2, from which we compute the ratio of temperature to327
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radiative forcing. When multiplied by 1.5◦C and converted to a concentration range, this gives a range of328

400.2-510.2 ppm using the range of temperatures associated with one standard deviation from the mean,329

or 381.6-624.7 ppm when using the 5-95% range. A 2.0◦C ensemble is run with the HAPPI 2.0◦C SST330

pattern33 and CO2 fixed at 486.6ppm (96 members). All CO2 concentrations are prescribed as a global331

mean atmospheric concentration. Following previous work34, initial condition perturbations are applied332

between ensemble members via perturbations to the potential temperature. For MIROC5, we perform333

exactly the same ensemble runs, with 50 members per experiment using the same CO2 concentrations334

as HadAM3P. For CAM4, we use the data from three experiments, a present day, 1.5◦C, and 1.5◦C with335

a CO2 concentration of 379.0ppm (thus for CAM4, the 1.5◦C ensemble with CO2 at 423.1ppm doubles336

as the ‘best-estimate’ and ‘high’ ensembles and the 1.5◦C with CO2 at 379.0ppm becomes the ‘low’337

ensemble), all using the HAPPI experimental design with 501 ensemble members.338

Following standard AMIP design protocol16, soil moisture is allowed to vary freely in our simulations.339

The primary aim of the study is to disentangle the direct CO2 effect on regional climate from the ocean340

warming, since the latter strongly affects global mean warming and, additionally, may cause some large341

scale circulation changes. SST patterns can contribute to regional climate variability far further afield than342

their perturbation, whereas soil moisture effects are more local and do not affect global mean temperature343

significantly35. Some of the regional effect (and indeed perhaps a large part of this effect over land areas35)344

is due to changes in soil moisture. Holding soil moisture constant would mask some of the changes due to345

the direct effect of CO2, preventing us from disentangling this effect from that of the global mean warming346

of the ocean.347

We select the HAPPI experimental design as it allows us to isolate the direct effect of changing CO2348

on climate extremes. However, other possible experimental designs do exist where it would be possible to349

investigate this effect too36, 37. In the setup described in reference [36], 1.5◦C warming is arrived at by350
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2100 under two different emissions scenarios, one keeping concentrations below 440 ppm, and the other351

overshooting and then ramping down CO2 concentrations to arrive at 1.5◦C. In this setup however, there352

are many other differences between the simulations at 1.5◦C, e.g. sea ice-cover, and so the setup makes it353

hard to disentangle the direct response on extremes due to differing atmospheric CO2 concentrations. In354

the setup described in reference [37], first the CO2 emissions are determined that drive a particular coupled355

model (CESM) to arrive at 1.5◦C and 2.0◦C global warming, and then the coupled model is run with this356

CO2 concentration. Unlike the HAPPI setup, this guarantees the physically consistency of the setup and357

does not result in an SST response and CO2 concentration that are potentially inconsistent. However, to358

then investigate the impact of changed atmospheric CO2 concentration on extremes, one would then have359

to compare the impact across different models, making it hard to disentangle the direct effect of CO2 from360

all the other differences that may give rise to that difference in sensitivity (e.g. model physics and SST361

anomaly pattern).362

Regression model363

To compute the contribution of changes in radiative forcing and changes in global mean temperature to364

a change in a particular variable, we fit the changes in the 10-year ensemble mean variables between365

present and 1.5◦C runs to the model: ∆X = α∆F +β∆T̄ . ∆X is the change in variable. ∆F is the change366

in the radiative forcing due to CO2 from the present decade, ∆F = 3.71
ln2 · ln

(
C
Cp

)
24 where C and Cp are367

the CO2 concentration in the forced run and the present decade respectively in ppm. ∆T̄ is the change in368

global mean temperature between the 1.5◦C ensembles and the present day ensemble (not the change in369

mean SST, thus ∆T̄ is different for the three 1.5◦C ensembles). The regression framework allows us to370

account for the change in variables from the increase in global mean temperature arising from increased371

CO2 concentrations, and so separate the effect of direct radiative CO2 from the effect of the global mean372

temperature increase. The fit parameters α and β indicate the dependence of the change in variable to373
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changes in CO2 radiative forcing and global mean temperature respectively. Uncertainty estimates in374

warming for a given radiative forcing are calculated from the covariance matrix of α and β which accounts375

for the spread in 10-year ensemble member mean quantities.376

To apply the global mean temperature change correction, for each variable we subtract β (T̄H− T̄BE)377

from the high CO2 ensemble variable, and add β (T̄BE − T̄L) to the low CO2 ensemble variable (subscripts:378

H - high ensemble, BE - best-estimate ensemble, L - low ensemble). For maps, β is calculated for each379

individual grid-point, for area mean indices, β s are calculated from the area mean of the variable in380

question.381

Extreme indices382

The extreme measures T X90p and R95p are taken from the dictionary of the European Climate As-383

sessment and Dataset project (ECA&D), which has been commonly used in previous studies about384

climate extremes38–40. Precise definitions of the full list of indices are available at the ECA&D web-385

site (http://eca.knmi.nl/indicesextremes/indicesdictionary.php). The percentile thresholds for computing386

T X90p and R95p are calculated from the present day ensemble. Due to the quantity of daily data, we387

have not applied the five day filtering window when calculating the percentile threshold for T X90p.388

The simplified wet-bulb globe temperature (WBGT)41 is given by: WBGT = 0.567T +0.393e+3.94,389

where T is the air temperature in degrees Celsius and e denotes the water vapour pressure in hPa. Water390

vapour pressure is calculated from relative humidity by rH = e
E ×100%. The saturation water pressure, E391

(in hPa), is approximated using the Magnus formula42: E(T ) = 6.112hPa× exp
( 17.62T

243.12◦C+T

)
. We define392

the index WBGT 95p for a particular month as the number of degree months per year at each grid point393

above the 95th percentile of WGBT in the same month of the present day ensemble.394
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Significance testing395

We test for a discernible signal against the decadal variability in the model by assessing the difference396

between the means of the two sets of 10 year extreme index means for each ensemble member. To test397

for discernible changes between the high and low CO2 runs, the t-statistic does not depend on ensemble398

size, and is given by t = µh−µl√
σ2

h+σ2
l

, where the µi are the ensemble means in the high and low CO2 cases,399

and the σi the standard deviations of the 10-year ensemble member means. This tests for a decadal400

signal against the internal variability inherent in the climate system. We assess discernibility at the401

10% significance level. We also test for significant changes in the extreme index distributions using a402

two-sample Kolmogorov-Smirnov test at the 10% significance level.403

Data availability404

Model output data is being made available from the NERSC data portal: http://portal.nersc.gov/c20c/data.html.405
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