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ABSTRACT 1 

Land-atmosphere (L-A) interactions are a main driver of Earth’s surface water and energy budgets; 2 

as such, they modulate near-surface climate, including clouds and precipitation, and can influence 3 

the persistence of extremes such as drought. Despite their importance, the representation of L-A 4 

interactions in weather and climate models remains poorly constrained, as they involve a complex 5 

set of processes that are difficult to observe in nature. In addition, a complete understanding of 6 

L-A processes requires interdisciplinary expertise and approaches that transcend traditional 7 

research paradigms and communities. To address these issues, the international Global Energy and 8 

Water Exchanges project (GEWEX) Global Land-Atmosphere System Study (GLASS) panel has 9 

supported ‘L-A coupling’ as one of its core themes for well over a decade. Under this initiative, 10 

several successful land surface and global climate modeling projects have identified hotspots of 11 

L-A coupling and helped quantify the role of land surface states in weather and climate 12 

predictability. GLASS formed the Local L-A Coupling (‘LoCo’) project and working group to 13 

examine L-A interactions at the process level, focusing on understanding and quantifying these 14 

processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling 15 

metrics for different applications and scales, and has motivated a growing number of young 16 

scientists from around the world. This article provides an overview of the LoCo effort, including 17 

metric and model applications, along with scientific and programmatic developments and 18 

challenges.  19 

 20 

 21 

 22 

 23 
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CAPSULE 24 

Metrics derived by the LoCo working group have matured and begun to enter the mainstream, 25 

signaling the success of the GEWEX approach to foster grassroots participation. In this article, 26 

LoCo's researchers discuss past, present and planned efforts. 27 

28 



4 

 

1. Background 29 

The role of land-atmosphere (L-A) interactions in weather and climate prediction has 30 

emerged over the last two decades as important but inherently challenging and complex.  One 31 

reason is that L-A interaction research has proceeded ‘in reverse’ compared to most science.  32 

Typically in Earth system sciences, observations inform theory, which then leads to the 33 

development and gradual refinement of conceptual and numerical models based on elucidated 34 

physical processes.  The benchmark for such models' success, and the progress of the underlying 35 

science, is when they begin to consistently outperform purely statistical approaches inherently not 36 

based in the representation of physical processes (Best et al. 2015).   37 

Conversely, coupled L-A (i.e. weather and climate) models arose well before the 38 

theoretical basis for L-A interactions had begun to mature, driven by the pressing need to supply 39 

accurate lower boundary conditions to atmospheric models as their use was extended from weather 40 

time scales to seasonal and longer periods.  Demand for closure of surface energy and water 41 

budgets in atmospheric models led to the development of the first land surface models (LSMs; e.g. 42 

Manabe 1969) that were internally consistent, but not necessarily well-behaved when coupled to 43 

atmospheric models that often have strong precipitation or radiative energy biases over continents.   44 

As was the case with early coupled ocean-atmosphere models, strong climate biases 45 

developed when LSMs were coupled to GCMs. But unlike the ocean, for which fairly 46 

comprehensive measurements of sea surface temperatures were available to expose the symptoms 47 

of coupled model biases, the land surface lacked routine observations of states like soil moisture 48 

and temperature, vegetation water content, and snow mass. In addition, key LSM parameters and 49 

state variables can be difficult to observe routinely, or are unmeasurable (e.g. soil moisture in 50 

models vs. observations as discussed in Koster et al. 2009). As a result, LSMs traditionally have 51 
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lacked a full representation of components such as water transport (e.g. groundwater) and 52 

vegetation dynamics, and the method for correcting meteorological biases in weather and climate 53 

forecast models often falls to tuning relatively unconstrained LSM parameters, such as vegetation 54 

rooting depth, to compensate for atmospheric model shortcomings (Kleidon and Heimann 1988).   55 

Over time, separate atmospheric and land surface model development communities have 56 

emerged. Although working towards related goals, the two communities have operated in parallel 57 

and have been largely unsuccessful in addressing coupled process representation via joint 58 

modeling efforts. As a result, the development and evaluation of traditional LSMs and hydrological 59 

models has occurred predominantly in an offline (uncoupled) mode (van den Hurk et al. 2011). 60 

The study of L-A interactions has emerged from a need to explore system feedbacks to improve 61 

process understanding and model performance. In this paper, we first outline the broader context 62 

of L-A interactions over time and the emergence of the GEWEX international community-based 63 

Local L-A Coupling (LoCo) initiative.  The following sections discuss the evolution of LoCo over 64 

time and its contributions to the research community.  65 

 66 

2. A Brief History of L-A Interaction Research 67 

It is widely accepted that realistically representing coupled processes in models is a 68 

prerequisite for surface climate predictability (Betts 2004). However, the necessary spatial and 69 

temporal coverage of observations to underpin coupled L-A model evaluation and development 70 

has been lacking (Guillod et al. 2014). The prototypical 2-week field campaigns that have been 71 

the backbone of developing atmospheric process understanding have proved too short to provide 72 

the necessary data, and longer campaigns are costly. With few exceptions (e.g. FIFE; Hall and 73 

Sellers 1995, CASES; Yates et al. 2001; Moeng et al. 2003), the majority of campaigns are also 74 
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lacking in terms of addressing the full suite of measurements (across the soil-vegetation-75 

atmosphere system) required for L-A studies, focusing on observations in one or two of these 76 

compartments only. The new Land-Atmosphere Feedback Experiment (LAFE) which was 77 

conducted in August 2017 was designed to close these observational gaps (Wulfmeyer et al. 2017). 78 

Additionally, land surface properties (e.g., land cover, terrain and soil texture) are highly 79 

heterogeneous across a wide range of spatio-temporal scales, hampering generalization of 80 

measurements from one location to another. As a result, the multivariate and multiscale coupled 81 

L-A processes remain poorly observed and incompletely understood (e.g., Betts et al. 1996, Betts 82 

2000, Betts 2004, Ek and Holtslag 2004, Guo et al. 2006, Jimenez et al. 2014, Teuling et al. 2017). 83 

Standard model outputs, especially those from climate model intercomparison projects such as 84 

CMIP, are often insufficient to diagnose coupled sensitivities at the L-A interface.  85 

Broadly speaking, the potential linkages between land surface variables such as soil 86 

moisture (SM), and atmospheric variables, such as temperature or precipitation (P) are rather 87 

intuitive, and have been highlighted in recent studies and review articles (e.g. Seneviratne et al. 88 

2010, Betts and Silva Dias 2010). The importance of the land surface has been demonstrated not 89 

only in terms of predictability on daily to seasonal timescales (e.g., Koster et al. 2010, Hirsch et 90 

al. 2014, Dirmeyer and Halder 2016, Betts et al., 2017), but also in terms of influencing extremes 91 

such as drought and heatwaves (Roundy et al. 2013ab, Miralles et al. 2014, Wang et al. 2015, 92 

PaiMazumder and Done 2016), PBL evolution and cloud formation (Milovac et al. 2016) and 93 

afternoon convection (Findell et al. 2003a,b, Gentine et al. 2013, Guillod et al. 2015), and tropical 94 

cyclone re-intensification (Andersen and Shepherd, 2013). Other linkages, such as the role of SM 95 

or vegetation heterogeneity in mesoscale circulations (e.g., Taylor et al. 2012, Hsu et al. 2017) and 96 

planetary waves (Koster et al. 2014), and those driven by land use and land cover change or 97 
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management (e.g. Findell et al. 2007, Pitman et al. 2009, de Noblet-Ducoudre et al. 2012, 98 

Mahmood et al. 2014, Lejeune et al. 2015, Hirsch et al. 2015, Findell et al. 2017) are topics of 99 

active research. The fact that coupling studies are carried out across a range of time and space scale 100 

perspectives tends to also confound community thinking and consensus building (Guillod et al. 101 

2015, Knist et al. 2016). For example, assessment of the coupling within GCMs may vary 102 

significantly from local, diurnal scales to large and seasonal to inter-annual time scales (e.g., Wei 103 

et al., 2010, Ferguson et al. 2012, Green et al. 2017).  104 

 Understandably, the focus of the climate community in terms of L-A interactions has been 105 

on large scale SM-P relationships and causality. Most notably, the Global Land Atmosphere 106 

Coupling Experiment (GLACE; Koster et al. 2004, Koster et al. 2006, Guo et al. 2006) highlighted 107 

potential regions where GCMs indicate the influence of antecedent SM on P, and the degree to 108 

which GCMs differ in describing that relationship (Dirmeyer et al. 2006). The GLACE studies 109 

highlighted the potential role of the land surface in climate predictability and served to galvanize 110 

community interest in L-A interactions, especially toward global hotspots of L-A coupling in many 111 

semi-arid and agricultural areas. Since then, numerous studies have pursued the notion of coupling 112 

hotspots (e.g., Notaro 2008, Zhang et al. 2008, Anderson et al. 2009, Dirmeyer et al. 2009, Wei et 113 

al. 2010, Zeng et al. 2010, Zhang et al. 2011, Ferguson et al. 2012, Mei and Wang 2012). GLACE 114 

also exposed the need to revisit the complex interactions, controls, and feedbacks inherent to SM-115 

P feedbacks that are indiscernible using metrics that rely on large-scale ensemble statistics rather 116 

than observable features.  117 

 118 

3. Evolution of LoCo 119 

Over the last decade, the importance of L-A coupling for weather and climate model 120 

development has become more apparent under the GEWEX Imperatives 121 
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(http://www.gewex.org/about/science/seven-gewex-imperatives) and the World Climate Research 122 

Program (WCRP) Grand Challenges (https://www.wcrp-climate.org/grand-challenges/grand-123 

challenges-overview). The overarching goals of these programs suggest that science must integrate 124 

approaches to evaluate atmospheric or land models to achieve further breakthroughs in model 125 

development, and that comprehensive coupling metrics (rooted in observable process-level scales) 126 

should be integral to the model development cycle.   127 

GLACE was an early element of the GEWEX Global Land-Atmosphere System Study 128 

(GLASS; van den Hurk et al. 2011), which was conceived as a voluntary, community-based panel 129 

under GEWEX in the late 1990s and focused on coordinating research efforts to evaluate and 130 

compare L-A models in four modes: (1) local-scale offline (i.e., uncoupled LSMs at the point 131 

scale); (2) large-scale offline (which has evolved into continental and global land data assimilation 132 

systems); (3) local-scale coupled (LSMs coupled to single-column models); and (4) large-scale 133 

coupled (LSMs coupled to GCMs) models.  These have been addressed through community-134 

supported model inter-comparison projects (MIPs), including the Project for the Inter-comparison 135 

of Land Surface Parameterization Schemes (PILPS; Henderson-Sellers et al. 1993, 2002), the 136 

Global Soil Wetness Project (GSWP; Dirmeyer 2011a), and the aforementioned GLACE (Koster 137 

et al. 2006, 2010, Guo et al. 2006, Seneviratne et al. 2013, van den Hurk et al. 2012). However, 138 

formation of a local-scale coupled MIP (mode 3) has lagged, initially due to the difficulty both in 139 

selecting sufficiently holistic metrics and designing an experiment that incorporates the full 140 

complexity of local L-A interactions (Fig. 1). Note that PILPS and GSWP were performed in 141 

offline mode without atmospheric feedbacks (i.e. uncoupled), while GLACE, despite being a 142 

multi-model coupled experiment, lacked process-level diagnosis. 143 

http://www.gewex.org/about/science/seven-gewex-imperatives
https://www.wcrp-climate.org/grand-challenges/grand-challenges-overview
https://www.wcrp-climate.org/grand-challenges/grand-challenges-overview
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To address this, a GLASS-supported working group, coined ‘LoCo’ for ‘local coupling’, 144 

was established in the mid 2000s to coordinate and promote process-level, local L-A coupling 145 

research and develop integrative metrics to quantify these complex relationships and feedbacks.  146 

Over the years, LoCo has grown to facilitate integrated model development and identify 147 

observational needs to better understand the complex nature of L-A interactions and their role in a 148 

changing climate.   149 

When referring to water and energy cycle research, LoCo defines ‘local coupling’ as: “the 150 

impact of land surface states on the evolution of surface fluxes, the PBL and free atmosphere, 151 

including clouds and precipitation, as well as positive and negative feedback mechanisms that 152 

modulate extremes”. This incorporates the notion that all interactions between land and 153 

atmosphere begin locally through the interface of the land surface and PBL (see Fig. 1). The ‘LoCo 154 

Process Chain’, a simplification of the complexities illustrated in Fig. 1, is shown schematically in 155 

Fig. 2 and written as: 156 

Δ𝑆𝑀 ⟶ Δ𝐸𝐹 ⟶ Δ𝑃𝐵𝐿 ⟶ Δ𝐸𝑛𝑡 ⟶ Δ𝑇2𝑚, 𝑄2𝑚 ⇒ Δ𝑃, 𝐶𝑙𝑜𝑢𝑑
(𝐚)          (𝐛)            (𝐜)            (𝐝)                                    

  (1) 157 

(Santanello et al., 2011). The links (arrows a-d) in the current process chain describe the 158 

sensitivities of: (a) surface sensible (H) and latent (LH) heat flux partitioning [i.e. evaporative 159 

fraction; EF = LH/(LH + H)],) to SM, (b) PBL height evolution to surface fluxes, (c) entrainment 160 

fluxes to PBL height evolution, and (d) the collective feedback of the free atmosphere (through 161 

the entrainment zone) on PBL thermodynamics. Taken in full, these interactions (a-d) contribute 162 

towards the development of convective cloud and precipitation, outlining the pathways that define 163 

the SM-P relationship (Fig. 2). The importance of these processes and interactions have been 164 

documented individually (e.g. Pan and Mahrt 1987, Oke 1987, Diak 1990, Brubaker and Entekhabi 165 

1996, Dolman et al. 1997, Peters-Lidard and Davis 2000, Betts and Viterbo 2005, Santanello et al. 166 
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2005, 2007, LeMone et al. 2010ab, Gentine et al. 2013a,b). Within this chain, there are also 167 

numerous positive and negative feedback loops, which have been detailed by Santanello et al. 168 

(2007), van Heerwaarden et al. (2009), and Seneviratne et al. (2010).   169 

The LoCo process-chain is far from being all-inclusive, and can be augmented in the future 170 

to account for terms such as radiation, snow, landscape type (e.g. desert, grassland, and tundra), 171 

canopy interception, large-scale convergence, and additional feedbacks such as those related to 172 

clouds (Fig. 1). In addition, the focus to date has been on daytime process and interactions with 173 

the convective PBL. Nevertheless, it provides a framework for simplifying the myriad of process 174 

interactions into a manageable and measurable series of quantities. Within this definition and 175 

scope, LoCo has been working to develop metrics and global mappings that quantify the 176 

components of Eq. 1. Voluntary contributors to LoCo span several continents, government and 177 

academia, and research interests including regional to global modeling and weather to climate 178 

prediction scales. 179 

 180 

4. LoCo Contributions 181 

Arguably the most prominent contribution of LoCo has been the continued development 182 

and promotion of quantifiable L-A coupling metrics to diagnose the land and PBL/precipitation 183 

coupling. Rather than common single-variable factors such as bias, root-mean-square-error or skill 184 

scores, where compensating errors are often hidden and causality is obscured, multivariate metrics 185 

can be used to quantify critical aspects of the L-A coupled system in models and observations, 186 

allowing for the exposure of model differences and deficiencies in a systematic fashion.   187 

Metrics and their diagnostic nature can be categorized in several ways.  Figure 3 illustrates 188 

the suite of LoCo-relevant metrics defined by their temporal scales of application (x-axis), by the 189 
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link(s) within the LoCo process chain (Eq. 1) they encapsulate (y-axis), and by their statistical vs. 190 

process-based nature (grey solid and dashed outlines). Some metrics, such as those quantifying 191 

soil moisture effects on surface fluxes, cover two-component interactions and others, such as those 192 

connecting soil moisture to precipitation, capture the totality of interactions.  LoCo metrics can 193 

shed light on systematic model biases in coupled processes that might otherwise have been 194 

overlooked in a classical model calibration-validation paradigm. Table 1 lists the metrics from Fig. 195 

3 along with more of their characteristics, including the nature of input requirements (states vs. 196 

fluxes, and land vs. atmosphere), spatial and temporal scale characteristics, and primary foundation 197 

for the metrics in terms of variables included. A slection of LoCo metrics and approaches, 198 

highlighted in Fig. 3, are now described in more detail below.  199 

a. Process-Level Metrics 200 

I. Mixing Diagrams and Thermodynamics 201 

One diagnostic approach that incorporates components of the LoCo process chain is 202 

concept of thermodynamic 'mixing diagrams', demonstrated for LoCo applications by Santanello 203 

et al. (2009). This approach, first introduced by Stommel (1947), relates the daytime co-evolution 204 

of 2-meter potential temperature () and humidity (q) to the full energy and water budgets and 205 

growth of the PBL. Mixing diagrams break down the evolution of  and q into vector components 206 

that represent the flux contributions of surface heat (sensible) and moisture (latent) versus those 207 

from the atmosphere (including PBL entrainment and advection; see Betts, 1992, Freedman and 208 

Fitzjarrald, 2001). Mixing diagrams require only near surface or mixed-layer temperature and 209 

humidity, surface fluxes, and PBL height information to infer entrainment fluxes that are 210 

notoriously difficult to observe (Lenschow and Stankov 1985, Grossman and Gamage 1995). 211 

Fortunately, to overcome the expense and difficulties of aircraft measurements, a new generation 212 
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of ground-based active remote sensing systems permits the measurement of water-vapor, 213 

temperature, and wind turbulence and flux profiles from the mixed to the entrainment layer 214 

(Muppa et al. 2016, Behrendt et al. 2016, Wulfmeyer et al. 2016, Bonin et al. 2017, Wulfmeyer et 215 

al. 2017). 216 

Furthermore, the spread in model results due to different physics scheme combinations 217 

(e.g. LSM + PBL) can be evaluated directly against observations. Other well-known metrics like 218 

the Bowen ratio and lifting condensation level are inherent in this approach and can be used in 219 

complimentary fashion to pinpoint weaknesses in the land and atmospheric components of coupled 220 

models (Santanello et al. 2009, 2011a,b, 2013a,b, 2015). 221 

The co-evolution of  and q (as energy variables, J kg-1) simulated by three different 222 

versions of a coupled mesoscale model (WRF-ARW w/Noah LSM) is shown for dry and wet soil 223 

moisture locations over the Southern Great Plains (Fig. 4; from Santanello et al. 2011a). 224 

Simulations were run with varying LSM-PBL combinations in WRF, and allowed for the model 225 

to evolve in response to L-A interactions generated by each combination as compared with 226 

observations (using flux tower, radiosonde, and meteorological data). Overall, the results show 227 

that different soil moisture states lead to distinct diurnal patterns of  and q evolution throughout 228 

the day. In this mixing diagram, vectors are defined for the daytime surface and atmospheric 229 

(advection + entrainment) flux contributions to the PBL budget. Over drier soils, significant 230 

warming and drying occurs due to strong surface heating (sensible heat flux) that leads to deep 231 

PBL growth and aggressive warm, dry air entrainment at the PBL top. Over wetter soils, there is 232 

strong surface moistening due to evaporation and little warming and drying throughout the day 233 

due to limited PBL growth and entrainment. Overall, these diagrams also demonstrate that in order 234 

to further constrain the causes of model errors it is desirable to have observing systems (such as 235 
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that available at the SGP site shown here) that can measure a full suite of L-A variables including 236 

vertical profiles and sensible and latent heat and entrainment fluxes. 237 

II. CTP-HIlow 238 

The convective triggering potential (CTP) – low-level humidity index (HIlow) framework 239 

(see Findell and Elthair 2003a,b for details) was developed to better characterize the circumstances 240 

in which LoCo could influence afternoon convection: when positive feedbacks (moist surface 241 

conditions increasing the chances of rain) or negative feedbacks (dry surface conditions increasing 242 

the chances of rain) were more likely to prevail, or when large-scale atmospheric conditions would 243 

dictate the occurrence or absence of rain. It is built on the idea that early-morning atmospheric 244 

profiles of temperature and humidity can provide information on whether boundary layer 245 

moistening or boundary layer deepening would be more likely to lead to convective triggering 246 

during the course of the day, or if the fluxes from the surface are unlikely to influence convective 247 

conditions. For example, if HIlow indicates that the early-morning lower atmosphere is extremely 248 

dry, moisture evaporated into the PBL from the surface cannot increase the PBL’s moist static 249 

energy enough to allow for convection to occur. Such days are termed atmospherically controlled 250 

as rain cannot be triggered by local surface processes (Fig. 5). 251 

The CTP assesses the stability of the lower troposphere by measuring the departure of the 252 

temperature profile from moist adiabatic conditions in the region between 100 and 300 hPa above 253 

the ground surface. This is important because deep convection is triggered when the growing 254 

daytime PBL reaches the level of free convection (LFC). The lowering of the LFC during this 255 

period of BL growth is impacted by the moist static energy within the boundary layer and the 256 

temperature lapse rate of the air through which the LFC falls: the LFC falls faster when the 257 

temperature profile is close to moist adiabatic. For convective triggering, high sensible heat flux 258 
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accompanied by rapid PBL growth is more effective when the low-level atmospheric profile is 259 

near dry adiabatic and the CTP is high (a negative feedback), while PBL moistening accompanied 260 

by rapid LFC fall is a more effective mechanism when the lower atmosphere is close to moist 261 

adiabatic and CTP is low (a positive feedback). A negative CTP indicates the local atmosphere is 262 

too stable to convect; any rainfall would likely come from large-scale systems moving into the 263 

area during the course of the day.  264 

 Findell and Eltahir (2003b) used one-dimensional PBL modeling with U.S radiosonde data 265 

to map regions with frequent positive and negative feedback days (Fig. 5). Ferguson and Wood 266 

(2011) used satellite data sources to generate global maps of CTP, HIlow, and regional convective 267 

regime classifications of four types: local atmospheric conditions favoring convection over wet 268 

soils, over dry soils, and either supporting or suppressing convection, independent of land surface 269 

conditions. They developed a methodology to derive dataset-specific threshold values in CTP-270 

HIlow parameter space that compensates both for biases in the satellite-derived datasets and for 271 

limitations of the original thresholds. Roundy et al. (2013a) extended the work of Ferguson and 272 

Wood (2011) and developed the Coupling Drought Index (CDI), which allows for day-to-day 273 

diagnosis of wet-soil advantage, dry-soil advantage, or atmospherically controlled conditions, 274 

given a long historical record to establish “climatological” joint probabilities between surface soil 275 

moisture, CTP and HIlow. This allows for real-time assessment of convective sensitivity to local 276 

land-surface conditions, and has been used to better understand the role of the land surface in 277 

modulating drought events (Roundy et al. 2013a,b, Roundy and Santanello 2017).  278 

III. Heated Condensation Framework 279 

The Heated Condensation Framework (HCF; Tawfik and Dirmeyer 2014, Tawfik et al. 280 

2015a,b) diagnoses the contribution of surface fluxes to convective initiation based on atmospheric 281 
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profiles of temperature and humidity.  The HCF differs from traditional convective diagnostic 282 

approaches; rather than lifting an isolated air parcel to quantify convective instability due to 283 

sensible heating and moisture flux, the HCF quantities are calculated by considering the well-284 

mixed turbulent growth of the PBL. This construction emphasizes local buoyancy forced motions 285 

rather than large-scale mechanical parcel lifting, and diagnoses a critical atmospheric level referred 286 

to as the buoyant condensation level (BCL). The BCL is the height where clouds would form atop 287 

a developing PBL through surface buoyancy fluxes alone. To find the BCL, the surface 288 

temperature is increased incrementally with the resulting heat mixed into the atmosphere 289 

producing an adiabatic temperature profile that intersects the original temperature profile at some 290 

height above the ground. The moisture within that depth is also mixed to a constant specific 291 

humidity. This incremental heating is repeated until saturation occurs at the top of the adiabatically 292 

mixed temperature profile, determining the BCL height. Locally triggered convection is initiated 293 

when no further surface heating is required (e.g. the PBL height equals the BCL height).  294 

If some surface energy goes into moisture flux instead of sensible heat flux, the PBL 295 

specific humidity would increase and the BCL would descend. However, that latent heat energy 296 

would be at the expense of sensible heat flux, and the lower BCL may not be reached as easily 297 

depending on the atmospheric profile. An optimum partitioning between sensible heat and 298 

moisture flux will trigger convection with the minimum total energy input. Surface soil moisture 299 

conditions and available energy (net surface radiation) may determine whether the PBL will grow 300 

to the BCL height. It should also be made clear that the HCF does not quantify the intensity of 301 

convection but rather whether convection is initiated locally.  302 

Using the HCF, the atmospheric and land surface conditions leading up to any convective 303 

initiation can be quantified in models, reanalysis, or observations, elucidating emergent land-304 
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convection relationships. Figure 6 shows the percent chance of convective initiation given a 305 

morning convective inhibition (as defined by the HCF variable θdef, which represents the 306 

temperature inputs needed in order for saturation to occur at the top of the mixed layer) and 307 

morning 10-cm soil moisture using 34-years of summer (June -August) reanalysis data from the 308 

North American Regional Reanalysis (NARR; Mesinger et al. 2006) over the contiguous United 309 

States, and indicates that these regions have between a 15-35% probability of local convective 310 

cloud initiation.  311 

Starting from the regional average of soil moisture and θdef over the Southeastern United 312 

States (indicated by the SE in Fig. 6) the sensitivity of convective initiation to morning states of 313 

soil moisture and θdef can be determined. For example, decreasing soil moisture from the 0.28 m3 314 

m-3 average to 0.15 m3 m-3 would increase the likelihood of local convective initiation by roughly 315 

10%. Overall, Fig. 6 shows that the likelihood of convective initiation is more sensitive to the 316 

morning state of θdef, and soil moisture provides a secondary control on convective initiation. In 317 

addition to this emergent soil moisture-convective initiation relationship, the HCF also contains a 318 

set of other diagnostic quantities (not covered here) that quantify the most efficient surface energy 319 

partitioning needed to achieve convective initiation (Tawfik et al. 2015a).   320 

b. Statistical Metrics 321 

I. Soil Moisture Memory 322 

As the first link of the process-chain (Eq. 1), soil moisture has the ability to influence the 323 

L-A processes over time, and has been the focus of a number of quantitative metrics (e.g., 324 

Schlosser and Milly 2002, Betts et al. 2004, Notaro et al. 2008, Orlowsky and Seneviratne et al. 325 

2010, Mei and Wang 2012, Miralles et al. 2012, Roundy et al. 2013a,b). Soil moisture memory 326 

(SMM) is a measure of the persistence of SM anomalies, which may then affect coupled feedbacks 327 



17 

 

(e.g. McColl et al., 2017a,b). This is important because the soil accumulates and retains past 328 

precipitation and other weather anomalies (e.g., heat waves). This memory extends the impact of 329 

weather and climate events forward in time and can provide additional predictability of future 330 

weather and climate, improving predictions.  331 

Delworth and Manabe (1988, 1989) showed that the time evolution of the surface water 332 

budget can be represented as a first-order Markov process such that the lagged autocorrelation of 333 

soil moisture (defined as 𝑟(𝜏) = exp (−𝜆𝜏)) has an e-folding time scale of 1/𝜆 that can redden the 334 

spectrum of atmospheric variability where feedbacks are present. This time scale is typically 335 

defined as the SMM and is sensitive not only to the time spectrum of precipitation but also 336 

terrestrial hydrologic processes (e.g., infiltration, runoff, evapotranspiration), making it a tool to 337 

validate LSM simulation of these processes. SMM is generally calculated from long time series of 338 

data as a seasonally-varying climatological characteristic of local hydrology (cf. Koster and Suarez 339 

2001). SMM has been estimated in observational studies (e.g., Vinnikov and Yeserkepova 1991, 340 

Koster et al. 2003, Dirmeyer et al 2016) and applied as a robust metric for verifying soil moisture 341 

persistence in both uncoupled and coupled LSMs and across observational datasets from in-situ to 342 

satellite instruments (e.g., Robock et al. 1995, Koster and Suarez 2001, Seneviratne and Koster 343 

2012, Dirmeyer et al. 2013, Hagemann and Stacke 2015). It should be noted that the frequency of 344 

data (observations or model output) affects the estimation so care must be taken when comparing 345 

results; longer periods between samples (weekly instead of daily, or monthly instead of weekly) 346 

act as a low-pass time filter, removing higher frequencies from consideration. 347 

II. Two-legged metrics 348 

The most common multi-variate statistic is the correlation r(v1,v2), where high correlations 349 

between variables can hint at causality. However, high correlations within the LoCo process chain 350 
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do not guarantee important feedbacks are acting. For instance, in the Sahara there are very strong 351 

correlations between soil moisture and evapotranspiration (ET), but there is rarely enough soil 352 

moisture to contribute to meaningful evaporation. To have an impact on the atmosphere, there 353 

must be sufficient variability in the terms over time. Guo et al. (2006) recognized this and presented 354 

a metric combining correlation and standard deviation 𝜎. Dirmeyer (2011b) generalized this as a 355 

“terrestrial coupling index” I, noting the relationship: 356 

𝐼 = 𝜎𝜙𝑟(𝑆𝑀, 𝜙) = 𝜎𝑆𝑀
𝑑𝜙

𝑑𝑆𝑀
   (2) 357 

where the linear regression slope of surface flux 𝜙 on SM, 
𝑑𝜙

𝑑𝑆𝑀
, is a measure of the sensitivity of 358 

𝜙 to SM. Like CTP-HIlow, coupling indices are calculated from large time series of daily (or longer) 359 

data. 360 

Progressing along the process chain in Eq. 1 to the response of atmospheric states to surface 361 

fluxes, coupling indices for the atmospheric leg can also be generated using the same formulation 362 

in Eq. 2 but substituting the surface fluxes for soil moisture, and atmospheric properties for the 363 

surface fluxes. When atmospheric leg indices are paired with indices from the terrestrial leg, we 364 

have “two legged” coupling metrics showing the potential link from land surface states to 365 

atmospheric responses. Separate pathways in the process chain through the heat and moisture 366 

cycles can be examined, e.g., noting the strong relationships between surface sensible heat flux 367 

and daytime PBL growth (Betts 2004).  368 

Two-legged metrics are easily applied to model output, provided that the necessary 369 

variables are saved and complete in time and space. Figure 7 shows the global distribution of 370 

terrestrial (through the moisture variables, SM and latent heat flux) and atmospheric (through the 371 

thermal variables, sensible heat flux and PBL height) legs for boreal and austral summers estimated 372 
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from multi-decade simulations of the operational coupled L-A model from ECMWF (Dirmeyer et 373 

al. 2012). Application to observed data can be more challenging as surface flux measurements are 374 

not widespread nor typically long-term. For the terrestrial leg, co-located soil moisture and surface 375 

flux measurements are necessary. For the atmospheric leg, co-located surface flux and 376 

meteorological or profile measurements are necessary. There is also a seasonality in coupling that 377 

is made evident using these metrics, as seen in Fig 7. 378 

III. Triggering and Amplification Feedback Strength (TFS/AFS) 379 

Findell et al. (2011) evaluated the sensitivity of afternoon rainfall to morning EF using 25 380 

years of data from the North American Regional Reanalysis dataset (NARR; Mesinger et al. 2006). 381 

The EF-dependence on rainfall was assessed using two statistical metrics: triggering feedback 382 

strength (TFS), which reflects how afternoon rainfall frequency changes with EF, and 383 

amplification feedback strength (AFS), which quantifies how accumulated rainfall varies with EF 384 

on those afternoons when rainfall occurs. They are defined as: 385 

𝑇𝐹𝑆 =  𝜎𝐸𝐹
𝜕Γ(𝑟)

𝜕𝐸𝐹
 ; 𝐴𝐹𝑆 =  𝜎𝐸𝐹

𝜕Ε[r]

𝜕𝐸𝐹
    (3) 386 

where 𝜎𝐸𝐹 is the standard deviation of evaporative fraction, Γ(𝑟) is the probability of afternoon 387 

rainfall occurrence, and Ε[r] is the expected value of rainfall amount when rainfall does occur (> 388 

1 mm).  389 

To limit the analysis to local conditions when large-scale forcing was not dominant, TFS 390 

was calculated using data from only summertime days with no rain in the morning and with 391 

CTP>0. Days contributing to the AFS calculation were further limited to those when afternoon 392 

rainfall occurred. This work showed that high evaporation enhances the probability of afternoon 393 

rainfall over the U.S. primarily east of the Mississippi River (Fig. 8). Variations in surface fluxes 394 

were shown to lead to 10-25% changes in afternoon rainfall probability in these regions (Fig 8a). 395 
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The intensity of rainfall, by contrast, was largely insensitive to surface fluxes (Fig 8b). These 396 

results indicate that while surface flux partitioning can shift the local atmosphere from non-397 

convecting to convecting in non-moisture-limited regions, other controls such as free tropospheric 398 

moisture content or large scale moisture convergence largely determine how much rainfall occurs. 399 

Findell et al. (2011) suggest that local surface fluxes represent an important trigger for 400 

convective rainfall in the eastern United States during the summer, leading to a positive 401 

evaporation–precipitation feedback. This focus on the impact of surface fluxes on subsequent 402 

rainfall does not include the soil moisture portion of the process chain in Fig 2 (arrow a), but is a 403 

statistical assessment of the net sensitivity of ∆P to ∆EF (arrows b, c, and d). Berg et al. (2013) 404 

showed results from a GCM with similar TFS and AFS signatures as the NARR model data, but 405 

demonstrated that the GCM’s TFS resulted from a weaker sensitivity of rainfall to EF than the 406 

NARR model data yet showed enhanced variability of EF, highlighting the complexity of 407 

characterization of interdependent processes. In addition, Guillod et al. (2014) showed that the 408 

TFS patterns are sensitive to the choice of observational data, highlighting the need for better 409 

constrained observations of surface turbulent fluxes. 410 

 411 

5. Resources and Outreach 412 

In addition to the GEWEX, GLASS, and LoCo websites (http://www.gewex.org/loco/), 413 

there have been a number of resources developed by the LoCo Working Group to help support 414 

community involvement.   415 

a. The Coupling Metrics Toolkit (CoMeT) 416 

 The Coupling Metrics Toolkit (CoMeT; http://www.coupling-metrics.com/) is an open 417 

source code package for calculating selected LoCo coupling metrics. Specifically, CoMeT is a set 418 
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of portable FORTRAN 90 modules with thorough in-line documentation currently available via a 419 

Git repository. The modules are designed to be easily wrapped into existing Python or NCAR 420 

Common Language (NCL) code using the f2py and WRAPIT commands respectively. 421 

Development of CoMeT was motivated by the growing need from the broader research community 422 

to examine L-A coupling and interactions and the lack of a standard code package to facilitate 423 

calculation. Currently CoMeT contains six metrics, five of which are discussed in this article: 1) 424 

soil moisture memory (SMM), 2) the variables from the mixing diagram approach, 3) CTP-HIlow, 425 

4) the two-legged coupling indices, 5) HCF, and 6) the relative humidity (RH) tendency (Ek and 426 

Mahrt 1994, Ek and Holtslag 2004, Gentine et al. 2013). Future plans for CoMeT include a Python-427 

based wrapper that would allow users to specify the path to data and desired metrics, where CoMeT 428 

would return an output file with the results. This will enable a friendlier interface that does not 429 

require the user to write wrapping code. Because this resource is intended for broad use, 430 

community input and requests regarding additional metrics are highly welcome. 431 

b. Quick Reference for Metrics 432 

A growing reference catalog of L-A coupling metrics is maintained at: 433 

http://cola.gmu.edu/dirmeyer/Coupling_metrics.html.  Some two-dozen metrics are listed, with 434 

links to single page PDF documents on each that give a basic description, input/variable 435 

requirements, applicability, caveats and references for further information.  The catalog also 436 

outlines to which portion of the LoCo process chain each metric is relevant, the applicable space 437 

and time scales of the metric, and whether it can be estimated from observational data (cf. Table 1 438 

for a subset). As with CoMeT, this is a community resource that can expand to accommodate new 439 

metrics, and user input is welcome. 440 

c. Community Connections 441 
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LoCo Working Group members serve to facilitate and advocate for L-A coupling 442 

considerations in several science communities. As with the LoCo metrics, these connections span 443 

a wide range of scales and applications, and aim to increase awareness of the role of L-A 444 

interactions in weather and climate. This includes the subseasonal-to-seasonal (S2S) prediction 445 

community (Vitart et al. 2017), where LoCo has been utilized to elucidate how global models 446 

should initialize their LSMs. This also includes strong involvement in the planning and execution 447 

of field campaigns and dataset production like those led by the Department of Energy’s 448 

Atmospheric Radiation Measurement (DOE-ARM) program’s Southern Great Plains (SGP) 449 

testbed. Over the past 20 years, the ARM community has utilized observations of the PBL to 450 

investigate L-A interactions from a mostly atmospheric perspective (e.g. Berg and Stull 2004, 451 

Zhang and Klein 2010), and the SGP site has recently undergone significant reconfiguration to 452 

better monitor L-A interactions, including new soil moisture sensors and an overall instrument 453 

synergy that spans the LoCo process chain. LoCo efforts have helped lead to development of ‘best 454 

estimate’ products of land surface (ARMBE-Land; Xie et al., 2010) and additional PBL profile 455 

measurements (ESLCS; Ferguson et al., 2016) complementing the traditional suite of atmospheric 456 

measurements to more fully assess coupled processes and utilize LoCo metrics. Ongoing and 457 

future campaigns over the SGP are focused on the surface layer (< 100 meters above surface) 458 

(Cheng et al. 2017). L-A interactions including the observation and theoretical derivation of key 459 

variables in the PBL such as variance and flux profiles as well as entrainment fluxes have recently 460 

become available, e.g. within the Land-Atmosphere Feedback Experiment (LAFE; Wulfmeyer and 461 

Turner 2016, Wulfmeyer et al. 2017) which can be applied for testing new similarity relationships 462 

(Wulfmeyer et al. 2016) and extended analyses of LoCo metrics.  463 
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LoCo is supporting the organization of a North American regional hydroclimate project 464 

(http://www.gewex.org/panels/gewex-hydroclimatology-panel/regional-hydroclimate-projects-465 

rhps/north-american-regional-hydroclimate-project-initiative/) under GEWEX’s water 466 

availability grand challenge, and convenes or contributes to numerous conference sessions, 467 

workshops and yearly summer schools. LoCo also contributes to the National Research Council 468 

Decadal Survey by identifying gaps in our observational suite, especially from space, that are 469 

needed to utilize LoCo metrics to further improve understanding of L-A coupling. 470 

6. Challenges and the Future of LoCo 471 

It is evident that the scope of LoCo, defined by Eq. 1, captures only a subset of L-A 472 

processes and types of coupling that exist in nature. However, the LoCo paradigm serves as a 473 

foundation, rooted in water and energy exchanges, from which to expand upon in terms of breadth 474 

and complexity. As the second decade of LoCo begins, the Working Group has broadened its scope 475 

to consider cold processes (snow, ice), radiation and cloud feedbacks, spatial SM-P feedbacks, 476 

human land and water management impacts (drainage, irrigation, land use/land cover change, 477 

dams), soils and groundwater, biogeochemistry (carbon), vegetation state (e.g. Williams et al. 478 

2015) and stress (solar-induced fluorescence, transpiration), and to extend to phenomena such as 479 

monsoons and landfalling tropical cyclones. There is also a strong push to extend to 480 

nighttime/stable coupling assessment and interactions with the PBL community. The expanding 481 

themes are reflective of science steering at higher levels within GEWEX and WCRP, as well as 482 

new areas of expertise represented within the LoCo working group. There is also work to quantify 483 

the relative contribution of local versus external forcing to event- and seasonal-scale L-A coupling 484 

strength, in the midst of internal variability (e.g., Song et al. 2016, Ford et al. 2015, Berg et al. 485 

2017). This evolution coincides with, and contributes to, the evolution of Earth System models 486 

http://www.gewex.org/panels/gewex-hydroclimatology-panel/regional-hydroclimate-projects-rhps/north-american-regional-hydroclimate-project-initiative/
http://www.gewex.org/panels/gewex-hydroclimatology-panel/regional-hydroclimate-projects-rhps/north-american-regional-hydroclimate-project-initiative/


24 

 

that encapsulate additional processes, but at the same time require more complex and quantitative 487 

metrics to employ in their development. 488 

In terms of recent community-based projects, there are direct connections that are being 489 

made to the GEWEX DIurnal land/atmosphere Coupling Experiment (DICE; 490 

http://appconv.metoffice.com/dice/dice.html) and the Protocol for the Analysis of Land Surface 491 

Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER; Best et al. 492 

2015, Haughton et al. 2016); the latter can provide a paradigm for extending model benchmarking 493 

vertically into the atmosphere. LoCo is also connected to the GLACE modeling community via 494 

the GLACE-CMIP5 project (Seneviratne et al. 2013), which seeks to evaluate SM-atmosphere 495 

coupling and its impact on climate change in models using idealized GCM simulations with and 496 

without interactive SM (e.g., Berg et al. 2016, 2017a, 2017b), and LoCo approaches have been 497 

used to find coherency in trends as part of the IPCC AR5 (van Heerwaarden et al. 2010). Likewise, 498 

as the CMIP6 exercise comes to fruition, LoCo will look to support and inform the analysis of 499 

climate model simulations, in particular modeling experiments focusing on the role land surface 500 

processes, such as soil moisture and snow feedbacks (LS3MIP; van den Hurk et al. 2016).  501 

The theme of the 2017 AMS Annual Meeting – “Observations Lead the Way” – is also 502 

highly relevant to the success of LoCo. Advanced metrics are only as good as the observations 503 

applied to confront models. While tremendous progress has been made in retrieving components 504 

of the water cycle (e.g. soil moisture, clouds, precipitation) from space, the layer of interaction 505 

between the land and atmosphere (i.e. the PBL and its diurnal evolution) remains largely 506 

undersampled, and thus the full suite of variables needed to assess the process-chain in Eq. 1 has 507 

been very difficult to observe completely at the necessary spatial or temporal scales (Findell et al. 508 

2015). It is also clear that the metrics most useful in terms of characterizing L-A feedback include 509 
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variables which include the characteristics of the PBL from which entrainment fluxes and ABL 510 

depth are most important and which can also be observed. In particular, the lack of continuous 511 

monitoring of the lower troposphere (the PBL ‘gap’) has become quite evident. Therefore, the 512 

community must also support 1) the development and application of suitable observing systems to 513 

address L-A coupling, 2) the design and the application of a suitable sensor synergy to directly 514 

measure the required components of coupling metrics without any use of model data.  515 

To this end, there is now increasing activity in ground-based PBL profiling using active 516 

remote sensing techniques that will likely lead to methods that can be applied to future satellite 517 

missions (Wulfmeyer et al. 2015). Efforts to produce long- (Liu et al. 2012), medium- (Kolassa et 518 

al. 2016, 2017) and short-term (R. Bindlish, pers. communication) global and spatially and 519 

temporally homogenous satellite-based soil moisture records, a surface flux record (e.g. 520 

WECANN; Alemohammad et al. 2016) and within GEWEX to enhance the accessibility and 521 

quality of sub-daily precipitation records (e.g., Blenkinsop et al. 2016) will further enable 522 

observationally-based LoCo studies in the future.  523 

 Finally, the ultimate utility of improved understanding of the physical processes driving 524 

the L-A system should be felt in advancing our community models, improving weather and climate 525 

predictions, and ultimately enhancing decision making capabilities that protect life and property. 526 

This will require a change in model development philosophy, where parameterizations in GCMs 527 

and LSMs are not developed in separation but as linked parts of a coupled system, calibrated, 528 

validated and diagnosed together. Closer connections between research and operational 529 

communities, including joint development of benchmarks for coupled L-A modeling, will greatly 530 

aid progress, and we invite interested readers to contact the authors and/or refer to the LoCo 531 
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website for more information. These are the ultimate aims of the LoCo community – building 532 

effective scientific linkages that mirror the links we are recognizing in nature. 533 
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Figure 1: A schematic of local land-atmosphere interactions in a quiescent synoptic regime, 

including the SM-P feedback pathways. Solid arrows indicate a positive feedback pathway, and 

large dashed arrows represent a negative feedback, while red indicates radiative, black indicates 

surface layer and PBL, and brown indicates land surface processes. Thin red and grey dashed lines 

with arrows represent also represent positive feedbacks. The single horizontal gray-dotted line (no 

arrows) indicates the top of the PBL, and the seven small vertical dashed lines (no arrows) 

represent precipitation. Fig. 1 is courtesy of Michael Ek; embellished from earlier versions 

appearing in Ek and Mahrt, 1994 and Ek and Mahrt, 2004. 

Figure 2:  Schematic of the LoCo process-chain describing the components of L A interactions 

linking soil moisture to precipitation and ambient weather (T2m, Q2m), where SM represents soil 

moisture, EFsm is the evaporative fraction sensitivity to soil moisture, PBL is the PBL 

characteristics (including PBL height), ENT is the entrainment flux at the top of the PBL, T2m 

and Q2m are the 2-meter temperature and humidity, and P is precipitation. 

Figure 3:  LoCo metrics (see Table 1) across temporal scales (x-axis), relationship to the LoCo 

process-chain (Eq. 1) along the y-axis, and statistical vs. process-based nature (elliptical 

outlines).  Green background shading indicates land surface related states and fluxes, while blue 

indicates PBL and atmospheric variables. 

Figure 4: Mixing diagrams showing coupling behavior of three different modeling schemes vs. 

observations for dry and wet soil locations on 12 June 2002 over the U.S. SGP, as indicated by the 

diurnal (7am-7pm), hourly co-evolution of 2-meter temperature (y-axis) and humidity (x-axis) for 

a range of model simulations (green, red, blue representing different PBL schemes in the WRF 

model), observations (dashed black), and the derived surface and atmospheric flux vectors (black 
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arrows). The x- and y-axes are in units of J kg-1 after multiplying humidity by the latent heat of 

vaporization and temperature by the specific heat, respectively. Source: Figure 1 from Santanello 

et al. (2011a) based on experiments in Santanello et al. (2009) 

Figure 5: Regional categorizations (panel a) based on the distribution of daily CTP-HIlow values 

at radiosonde stations (+) through the contiguous US given the CTP-HIlow framework shown in 

panel (b). Source: Findell and Eltahir (2003b) 

Figure 6: Percent probability of triggering convection as a function of θdef (a measure of 

convective inhibition) and 10 cm soil moisture derived from 34-years of daily NARR summer 

data.  Average morning soil moisture and conditions are shown for four different regions over the 

United States: the Southeastern (SE), Southern Plains (SP), Northern Plains (NP), and Southwest 

(SW). Source: Figure 11b from Tawfik et al. (2015b)      

Figure 7: Terrestrial (left) and atmospheric (right) coupling indices based on the formulation in 

Eq (2) for the indicated seasons; SM=soil moisture, LHF=latent heat flux, SHF=sensible heat flux, 

PBL is height of the planetary boundary layer. Positive values indicate coupling, insignificant 

correlations are masked. Based on Fig. 8 of Dirmeyer et al. (2012) 

Figure 8: The sensitivity of convective triggering and rainfall amount to evaporative fraction. (a) 

Triggering feedback strength (TFS; units of probability of afternoon (noon-6 pm) rain) and (b) 

amplification feedback strength (AFS; units of mm of afternoon rain) during June-July-August, 

derived from 25 years of NARR data. Source: Findell et al. (2011). 

 

 


