627 research outputs found

    Квир-лингвистика: нужна ли она отечественной лингвистической гендерологии?

    Get PDF
    Статья посвящена квир-лингвистике как новому магистральному направлению развития современной парадигмы гендерных исследований. Подробно разбирается концептуальный аппарат этого направления. Описывается попытка изучения фрагментов языкового сознания носителей русского языка с учетом квир-фактора.Стаття присвячена квір-лінгвістиці як новому магістральному напрямку в розвитку сучасної парадигми гендерних досліджень. Докладно розбирається концептуальний апарат цього напрямку. Описується спроба вивчення фрагментів мовної свідомості носіїв російської мови з урахуванням квір-фактору.The article is targeted at a new discipline in the area of gender and language research – queer linguistics. The conceptual linguistic apparatus and terminology are discussed. The study of verbal responses obtained from Russian –speaking informants (gays and lesbians) as a linguistic construal of their world is analyzed

    In Situ Detection of Active Edge Sites in Single-Layer MoS2_2 Catalysts

    Full text link
    MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in-situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counter-intuitively towards higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions

    Elucidation of the pre-nucleation phase directing metal-organic framework formation

    Get PDF
    Metal-organic framework (MOF) crystallization is governed by molecular assembly processes in the pre-nucleation stage. Yet, unravelling these pre-nucleation pathways and rationalizing their impact on crystal formation poses a great challenge since probing molecular-scale assemblies and macroscopic particles simultaneously is very complex. Herein, we present a multimodal, integrated approach to monitor MOF nucleation across multiple length scales by combining in situ optical spectroscopy, mass spectrometry, and molecular simulations. This approach allows tracing initial metal-organic complexes in solution and their assembly into oligomeric nuclei and simultaneously probing particle formation. During Co-ZIF-67 nucleation, a metal-organic pool forms with a variety of complexes caused by ligand exchange and symmetry reduction reactions. We discriminate complexes capable of initiating nucleation from growth species required for oligomerization into frameworks. Co4-nuclei are observed, which grow into particles following autocatalytic kinetics. The geometric and compositional variability of metal-organic pool species clarifies long-debated amorphous zeolitic imidazolate framework (ZIF)-particle nucleation and non-classic pathways of MOF crystallization

    Современные концепции управления высшим учебным заведением

    Get PDF
    Целью и задачами статьи является исследование современных подходов к управлению вузом, их критический анализ и возможность оптимизации процессов деятельности вуза

    El gallo de Léon

    Get PDF
    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a crystalline particle, where the dopant-rich phase is located at the surface of the dopant-deficient phase. The limiting structure appears to be a solid solution with a La fraction of x = 0.6 in the bulk and x = 0.75 at the surface. Up to a La fraction of 0.6, this phase will coexist with a lanthanum-type structure in different proportions depending on the dopant amount. STEM-EELS appears to be a powerful technique to clarify the existence of a multiphase system, and it shows that XRF, XPS, and XRD measure averaged results and do not show the phase complexity of the solids

    Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy.

    Get PDF
    Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele

    Advancing the Compositional Analysis of Olefin Polymerization Catalysts with High-Throughput Fluorescence Microscopy

    Get PDF
    To optimize the performance of supported olefin polymerization catalysts, novel methodologies are required to evaluate the composition, structure, and morphology of both pristine and prepolymerized samples in a resource-efficient, high-throughput manner. Here, we report on a unique combination of laboratory-based confocal fluorescence microscopy and advanced image processing that allowed us to quantitatively assess support fragmentation in a large number of autofluorescent metallocene-based catalyst particles. Using this approach, significant inter- and intraparticle heterogeneities were detected and quantified in a representative number of prepolymerized catalyst particles (2D: ≥135, 3D: 40). The heterogeneity that was observed over several stages of slurry-phase ethylene polymerization (10 bar) is primarily attributed to the catalyst particles' diverse support structures and to the inhomogeneities in the metallocene distribution. From a mechanistic point of view, the 2D and 3D analyses revealed extensive contributions from a layer-by-layer fragmentation mechanism in synergy with a less pronounced sectioning mechanism. A significant number of catalyst particles were also found to display limited support fragmentation at the onset of the reaction (i.e., at lower polymer yields). This delay in activity or "dormancy" is believed to contribute to a broadening of the particle size distribution during the early stages of polymerization. 2D and 3D catalyst screening via confocal fluorescence microscopy represents an accessible and fast approach to characterize the structure of heterogeneous catalysts and assess the distribution of their fluorescent components and reaction products. The automation of both image segmentation and postprocessing with machine learning can yield a powerful diagnostic tool for future research as well as quality control on industrial catalysts

    Hydrogenation of levulinic acid to gamma-valerolactone over anatase-supported Ru catalysts:Effect of catalyst synthesis protocols on activity

    Get PDF
    γ-Valerolactone (GVL) is a value-added renewable chemical with great potential and can be obtained from biomass by the hydrogenation of levulinic acid (LA) using metal-based catalysts, such as Ru/TiO2. We here report an in depth study of the effect of catalyst synthesis parameters on the performance of Ru/TiO2 (anatase), varying the nature of the Ru-precursor and the conditions of the calcination and/or reduction step. Catalyst performance was evaluated under batch conditions at a hydrogen pressure of 45 bar and using either water (90 °C) or dioxane (150 °C) as solvent. The experiments showed that catalyst activity depends greatly on the Ru precursor used (RuCl3, RuNO(NO3)3, Ru(NH3)6Cl3). Best results when considering the turn-over frequencies (TOF) of the catalysts were obtained using the RuNO(NO3)3 precursor, whereas RuCl3 performed better when considering the initial rate based on Ru intake. An intermediate calcination step and the use of a hydrogen-rich sweep gas during the final reduction step were shown to have a negative impact on catalyst activity. Characterization of the fresh catalysts by BET and TEM provided valuable insight in the relation between the catalyst structure and its activity
    corecore