292 research outputs found
Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells
Embryonic stem cells (ESC) have the potential to self-renew indefinitely and
to differentiate into any of the three germ layers. The molecular mechanisms
for self-renewal, maintenance of pluripotency and lineage specification are
poorly understood, but recent results point to a key role for epigenetic
mechanisms. In this study, we focus on quantifying the impact of histone 3
acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We
analyze genome-wide histone acetylation patterns and gene expression profiles
measured over the first five days of cell differentiation triggered by
silencing Nanog, a key transcription factor in ESC regulation. We explore the
temporal and spatial dynamics of histone acetylation data and its correlation
with gene expression using supervised and unsupervised statistical models. On a
genome-wide scale, changes in acetylation are significantly correlated to
changes in mRNA expression and, surprisingly, this coherence increases over
time. We quantify the predictive power of histone acetylation for gene
expression changes in a balanced cross-validation procedure. In an in-depth
study we focus on genes central to the regulatory network of Mouse ESC,
including those identified in a recent genome-wide RNAi screen and in the
PluriNet, a computationally derived stem cell signature. We find that compared
to the rest of the genome, ESC-specific genes show significantly more
acetylation signal and a much stronger decrease in acetylation over time, which
is often not reflected in an concordant expression change. These results shed
light on the complexity of the relationship between histone acetylation and
gene expression and are a step forward to dissect the multilayer regulatory
mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog
Trajectories of self-rated health in people with diabetes: Associations with functioning in a prospective community sample
© 2013 Schmitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Self-rated health (SRH) is a single-item measure that is one of the most widely used measures of general health in population health research. Relatively little is known about changes and the trajectories of SRH in people with chronic medical conditions. The aims of the present study were to identify and describe longitudinal trajectories of self-rated health (SRH) status in people with diabetes. Methods: A prospective community study was carried out between 2008 and 2011. SRH was assessed at baseline and yearly at follow-ups (n=1288). Analysis was carried out through trajectory modeling. The trajectory groups were subsequently compared at 4 years follow-up with respect to functioning. Results: Four distinct trajectories of SRH were identified: 1) 72.2% of the participants were assigned to a persistently good SRH trajectory; 2) 10.1% were assigned to a persistently poor SRH trajectory; 3) mean SRH scores changed from good to poor for one group (7.3%); while 4) mean SRH scores changed from poor to medium/good for another group (10.4%). Those with a persistently poor perception of health status were at higher risk for poor functioning at 4 years follow-up than those whose SRH scores decreased from good to poor. Conclusions: SRH is an important predictor for poor functioning in diabetes, but the trajectory of SRH seems to be even more important. Health professionals should pay attention to not only SRH per se, but also changes in SRH over time.This work was supported by Operating Grant MOP-84574 from the Canadian Institutes of Health Research (CIHR). GG was supported by a doctoral fellowship from the CIHR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Memory and Belief in the Transmission of Counterintuitive Content
© 2016, Springer Science+Business Media New York. Cognitive scientists have increasingly turned to cultural transmission to explain the widespread nature of religion. One key hypothesis focuses on memory, proposing that that minimally counterintuitive (MCI) content facilitates the transmission of supernatural beliefs. We propose two caveats to this hypothesis. (1) Memory effects decrease as MCI concepts become commonly used, and (2) people do not believe counterintuitive content readily; therefore additional mechanisms are required to get from memory to belief. In experiments 1–3 (n = 283), we examined the relationship between MCI, belief, and memory. We found that increased tendencies to anthropomorphize predicted poorer memory for anthropomorphic-MCI content. MCI content was found less believable than intuitive content, suggesting different mechanisms are required to explain belief. In experiment 4 (n = 70), we examined the non-content-based cultural learning mechanism of credibility-enhancing displays (CREDs) and found that it increased participants’ belief in MCI content, suggesting this type of learning can better explain the transmission of belief
Cell-to-Cell Transformation in Escherichia coli: A Novel Type of Natural Transformation Involving Cell-Derived DNA and a Putative Promoting Pheromone
Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as ‘cell-to-cell transformation’. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10–5–10–6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity
Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types.Project ALS FoundationNational Institutes of Health (U.S.) (Grant P01 NS055923
Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43
Tbx3, a T-box transcription factor, regulates key steps in development of the heart and other organ systems. Here, we identify Sox4 as an interacting partner of Tbx3. Pull-down and nuclear retention assays verify this interaction and in situ hybridization reveals Tbx3 and Sox4 to co-localize extensively in the embryo including the atrioventricular and outflow tract cushion mesenchyme and a small area of interventricular myocardium. Tbx3, SOX4, and SOX2 ChIP data, identify a region in intron 1 of Gja1 bound by all tree proteins and subsequent ChIP experiments verify that this sequence is bound, in vivo, in the developing heart. In a luciferase reporter assay, this element displays a synergistic antagonistic response to co-transfection of Tbx3 and Sox4 and in vivo, in zebrafish, drives expression of a reporter in the heart, confirming its function as a cardiac enhancer. Mechanistically, we postulate that Sox4 is a mediator of Tbx3 transcriptional activity
Expanding the diversity of mycobacteriophages: Insights into genome architecture and evolution
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. © 2011 Hatfull et al
Mifepristone Prevents Stress-Induced Apoptosis in Newborn Neurons and Increases AMPA Receptor Expression in the Dentate Gyrus of C57/BL6 Mice
Chronic stress produces sustained elevation of corticosteroid levels, which is why it is considered one of the most potent negative regulators of adult hippocampal neurogenesis (AHN). Several mood disorders are accompanied by elevated glucocorticoid levels and have been linked to alterations in AHN, such as major depression (MD). Nevertheless, the mechanism by which acute stress affects the maturation of neural precursors in the dentate gyrus is poorly understood. We analyzed the survival and differentiation of 1 to 8 week-old cells in the dentate gyrus of female C57/BL6 mice following exposure to an acute stressor (the Porsolt or forced swimming test). Furthermore, we evaluated the effects of the glucocorticoid receptor (GR) antagonist mifepristone on the cell death induced by the Porsolt test. Forced swimming induced selective apoptotic cell death in 1 week-old cells, an effect that was abolished by pretreatment with mifepristone. Independent of its antagonism of GR, mifepristone also induced an increase in the percentage of 1 week-old cells that were AMPA+. We propose that the induction of AMPA receptor expression in immature cells may mediate the neuroprotective effects of mifepristone, in line with the proposed antidepressant effects of AMPA receptor potentiators
P2 receptors are involved in the mediation of motivation-related behavior
The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli
- …