1,750 research outputs found
Kirramyces destructans in Australia: biosecurity threat or elusive native pathogen?
Kirramyces destructans was first described in 1996 from north Sumatra, Indonesia, where it caused severe leaf and shoot blight on Eucalyptus grandis in nurseries and young plantations. Since then it has been reported in nurseries and plantations in Vietnam, Thailand and China, with its host range extending to include E. camaldulensis and E. urophylla. K. destructans has also been reported from native E. urophylla in East Timor and was considered a significant biosecurity threat to Australia’s native eucalypt forests and plantations. A study on the population diversity of K. destructans isolates throughout south-east Asia in which 8 gene regions were sequenced (four nuclear genes, one mitochondrial gene and three microsatellite markers) detected very low nucleotide polymorphism. This genetic uniformity is indicative of an introduced population which has subsequently spread throughout Asia via human-mediated movement of germplasm. Surveys of sentinel plantings in northern Australia revealed a complex of Kirramyces spp. among which K. destructans was detected. The same gene regions and markers were sequenced as for the Asian study and diversity among the K. destructans isolates in Australia was found to be much greater than that in Asia. We believe that K. destructans is native to Australia where is resides symptomlessly within the native vegetation. The disease is only expressed when non-endemic eucalypts are planted. As such the pathogen is a major encumbrance to the establishment of commercial eucalypt plantations in Northern Australia. The disease has not been observed in native ecosystems, but the effect of inoculum build up within plantations on adjacent native eucalypt remnants is not known
A systemic parvo-like virus in the freshwater crayfish Cherax destructor
Systemic Cowdry Type A inclusions (CAs) were observed in a moribund Cherax destructor collected at an aquaculture farm in South Australia. Inclusions were most common in the gills and were associated with multifocal necrosis of the main gill axis and lamellae. The hepatopancreas was necrotic; however, only one CA was observed in the interstitial tissues. CAs were associated with necrosis in the abdominal and gut musculature. CAs were also observed in the spongy connective tissues and the epicardium. Empty capsids (17.5 +/- 0.5 nm) and microfilaments were most commonly observed within these inclusions by transmission electron microscopy. Complete icosahedral viral particles (20.8 +/- 1.2 nm) were difficult to distinguish within the viroplasm, but were visualised better in aggregates between the viroplasm and the inner nuclear membrane. The nucleolus was closely associated with the developing viroplasm, and was hypertrophied and segregated into its fibrillar and granular components. The virus was named Cherax destructor systemic parvo-like virus (CdSPV) on the basis of its histopathology, cytopathology and morphology. CdSPV is the first systemic virus described in a freshwater crayfish
Robust microbial markers for non-invasive inflammatory bowel disease identification
Inflammatory Bowel Disease (IBD) is an umbrella term for a group of inflammatory diseases of the human gastrointestinal tract, including Crohn’s Disease (CD) and ulcerative colitis (UC). Changes to the intestinal microbiome, the community of micro-organisms that resides in the human gut, have been shown to contribute to the pathogenesis of IBD. IBD diagnosis is often delayed due its non-specific symptoms (e.g. abdominal pain) and an invasive colonoscopy is required for confirmation. Delayed diagnosis is linked to poor growth in children and worse treatment outcomes. Microbial communities are extremely complex and feature selection algorithms are often applied to identify key bacterial groups that drive disease. It has been shown that aggregating Ensemble Feature Selection (EFS) can be used to improve the robustness of feature selection algorithms. The robustness of a feature selector is defined as the variation of feature selector output caused by small changes to the dataset. Typical feature selection algorithms can be used to help build simpler, faster, and easier to understand models - but suffer from poor robustness. Having confidence in the output of a feature selector algorithm is key for enabling knowledge discovery from complex biological datasets. In this work we apply a two-step filter and an EFS process to generate robust feature subsets that can non-invasively predict IBD subtypes from high-resolution microbiome data. The predictive power of the robust feature subsets is the highest reported in literature to date. Furthermore, we identify five biologically plausible bacterial species that have not previously been implicated in IBD aetiology
Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences
The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context
Childhood tuberculosis: progress requires an advocacy strategy now
Childhood tuberculosis (TB) is a preventable and curable infectious disease that remains overlooked by public health authorities, health policy makers and TB control programmes. Childhood TB contributes significantly to the burden of disease and represents the failure to control transmission in the community. Furthermore, the pool of infected children constitutes a reservoir of infection for the future burden of TB. It is time to prioritise childhood TB, advocate for addressing the challenges and grasp the opportunities in its prevention and control. Herein, we propose a scientifically informed advocacy agenda developed at the International Childhood TB meeting held in Stockholm, Sweden, from March 17 to 18, 2011, which calls for a renewed effort to improve the situation for children affected by Mycobacterium tuberculosis exposure, infection or disease. The challenges and needs in childhood TB are universal and apply to all settings and must be addressed more effectively by all stakeholders
Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon
production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0
gamma gamma were detected in the
Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic
Heavy Ion Collider. The eta -> gamma gamma decay was also observed and
constituted the first eta measurement by STAR. The first direct photon cross
section measurement by STAR is also presented, the signal was extracted
statistically by subtracting the pi^0, eta, and omega(782) decay background
from the inclusive photon distribution observed in the calorimeter. The
analysis is described in detail, and the results are found to be in good
agreement with earlier measurements and with next-to-leading order perturbative
QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted
by Phys. Rev.
Identified high- spectra in Cu+Cu collisions at =200 GeV
We report new results on identified (anti)proton and charged pion spectra at
large transverse momenta (3<<10 GeV/c) from Cu+Cu collisions at
=200 GeV using the STAR detector at the Relativistic Heavy Ion
Collider (RHIC). This study explores the system size dependence of two novel
features observed at RHIC with heavy ions: the hadron suppression at
high- and the anomalous baryon to meson enhancement at intermediate
transverse momenta. Both phenomena could be attributed to the creation of a new
form of QCD matter. The results presented here bridge the system size gap
between the available pp and Au+Au data, and allow the detailed exploration for
the on-set of the novel features. Comparative analysis of all available 200 GeV
data indicates that the system size is a major factor determining both the
magnitude of the hadron spectra suppression at large transverse momenta and the
relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure
- …
