198 research outputs found

    Redox signals at the ER-mitochondria interface control melanoma progression.

    No full text
    Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease

    Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise.

    Get PDF
    The hippocampus has been shown to demonstrate a remarkable degree of plasticity in response to a variety of tasks and experiences. For example, the size of the human hippocampus has been shown to increase in response to aerobic exercise. However, it is currently unknown what underlies these changes. Here we scanned sedentary, young to middle-aged human adults before and after a six-week exercise intervention using nine different neuroimaging measures of brain structure, vasculature, and diffusion. We then tested two different hypotheses regarding the nature of the underlying changes in the tissue. Surprisingly, we found no evidence of a vascular change as has been previously reported. Rather, the pattern of changes is better explained by an increase in myelination. Finally, we show hippocampal volume increase is temporary, returning to baseline after an additional six weeks without aerobic exercise. This is the first demonstration of a change in hippocampal volume in early to middle adulthood suggesting that hippocampal volume is modulated by aerobic exercise throughout the lifespan rather than only in the presence of age related atrophy. It is also the first demonstration of hippocampal volume change over a period of only six weeks, suggesting gross morphometric hippocampal plasticity occurs faster than previously thought

    A Novel Three-Phase Model of Brain Tissue Microstructure

    Get PDF
    We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure

    Novel microwell-based spectrophotometric assay for determination of atorvastatin calcium in its pharmaceutical formulations

    Get PDF
    The formation of a colored charge-transfer (CT) complex between atorvastatin calcium (ATR-Ca) as a n-electron donor and 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a π-electron acceptor was investigated, for the first time. The spectral characteristics of the CT complex have been described, and the reaction mechanism has been proved by computational molecular modeling. The reaction was employed in the development of a novel microwell-based spectrophotometric assay for determination of ATR-Ca in its pharmaceutical formulations. The proposed assay was carried out in 96-microwell plates. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, linear relationship with good correlation coefficient (0.9995) was found between the absorbance and the concentration of ATR-Ca in the range of 10-150 μg/well. The limits of detection and quantitation were 5.3 and 15.8 μg/well, respectively. No interference was observed from the additives that are present in the pharmaceutical formulation or from the drugs that are co-formulated with ATR-Ca in its combined formulations. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, and reduction in the analysis cost by 50-fold. Although the proposed assay was validated for ATR-Ca, however, the same methodology could be used for any electron-donating analyte for which a CT reaction can be performed

    Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling

    Get PDF
    Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life

    Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling

    Get PDF
    Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life
    corecore