771 research outputs found
The non-Abelian gauge theory of matrix big bangs
We study at the classical and quantum mechanical level the time-dependent
Yang-Mills theory that one obtains via the generalisation of discrete
light-cone quantisation to singular homogeneous plane waves. The non-Abelian
nature of this theory is known to be important for physics near the
singularity, at least as far as the number of degrees of freedom is concerned.
We will show that the quartic interaction is always subleading as one
approaches the singularity and that close enough to t=0 the evolution is driven
by the diverging tachyonic mass term. The evolution towards asymptotically flat
space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3
small typographical changes
Photonic quantum state transfer between a cold atomic gas and a crystal
Interfacing fundamentally different quantum systems is key to build future
hybrid quantum networks. Such heterogeneous networks offer superior
capabilities compared to their homogeneous counterparts as they merge
individual advantages of disparate quantum nodes in a single network
architecture. However, only very few investigations on optical
hybrid-interconnections have been carried out due to the high fundamental and
technological challenges, which involve e.g. wavelength and bandwidth matching
of the interfacing photons. Here we report the first optical quantum
interconnection between two disparate matter quantum systems with photon
storage capabilities. We show that a quantum state can be faithfully
transferred between a cold atomic ensemble and a rare-earth doped crystal via a
single photon at telecommunication wavelength, using cascaded quantum frequency
conversion. We first demonstrate that quantum correlations between a photon and
a single collective spin excitation in the cold atomic ensemble can be
transferred onto the solid-state system. We also show that single-photon
time-bin qubits generated in the cold atomic ensemble can be converted, stored
and retrieved from the crystal with a conditional qubit fidelity of more than
. Our results open prospects to optically connect quantum nodes with
different capabilities and represent an important step towards the realization
of large-scale hybrid quantum networks
Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities.
Epilepsia. 2007 Sep;48(9):1678-85. Epub 2007 Jun 11.
Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities.
Marini C, Mei D, Temudo T, Ferrari AR, Buti D, Dravet C, Dias AI, Moreira A, Calado E, Seri S, Neville B, Narbona J, Reid E, Michelucci R, Sicca F, Cross HJ, Guerrini R.
SourceEpilepsy, Neurophysiology and Neurogenetic Unit, Institute of Child Neurology and Psychiatry, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.
Abstract
PURPOSE: SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). We studied 132 patients with epilepsy syndromes with seizures precipitated by fever, and performed phenotype-genotype correlations with SCN1A alterations.
METHODS: We included patients with SMEI including borderline SMEI (SMEB), GEFS+, febrile seizures (FS), or other seizure types precipitated by fever. We performed a clinical and genetic study focusing on SCN1A, using dHPLC, gene sequencing, and MLPA to detect genomic deletions/duplications on SMEI/SMEB patients.
RESULTS: We classified patients as: SMEI/SMEB = 55; GEFS+= 26; and other phenotypes = 51. SCN1A analysis by dHPLC/sequencing revealed 40 mutations in 37 SMEI/SMEB (67%) and 3 GEFS+ (11.5%) probands. MLPA showed genomic deletions in 2 of 18 SMEI/SMEB. Most mutations were de novo (82%). SMEB patients carrying mutations (8) were more likely to have missense mutations (62.5%), conversely SMEI patients (31) had more truncating, splice site or genomic alterations (64.5%). SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS compared to those with missense mutations and without mutations (p = 0.00007, ANOVA test). None of the remaining patients with seizures precipitated by fever carried SCN1A mutations.
CONCLUSION: We obtained a frequency of 71%SCN1A abnormalities in SMEI/SMEB and of 11.5% in GEFS+ probands. MLPA complements DNA sequencing of SCN1A increasing the mutation detection rate. SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS. This study confirms the high sensitivity of SCN1A for SMEI/SMEB phenotypes
Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two
We consider the billiard dynamics in a non-compact set of R^d that is
constructed as a bi-infinite chain of translated copies of the same
d-dimensional polytope. A random configuration of semi-dispersing scatterers is
placed in each copy. The ensemble of dynamical systems thus defined, one for
each global realization of the scatterers, is called `quenched random Lorentz
tube'. Under some fairly general conditions, we prove that every system in the
ensemble is hyperbolic and almost every system is recurrent, ergodic, and
enjoys some higher chaotic properties.Comment: Final version for J. Stat. Phys., 18 pages, 4 figure
Thermal simulation software outputs: a conceptual data model of information presentation for building design decision-making
Building simulation outputs are inherently complex and numerous. Extracting meaningful information from them requires knowledge which mainly resides only in the hands of experts. Initiatives to address this problem tend either to provide very constrained output data interfaces or leave it to the user to customize data organisation and query. This work proposes a conceptual data model from which meaningful dynamic thermal simulation information for building design decision-making may be constructed and presented to the user. It describes how the model was generated and can become operational, with examples of its applications to practical problems. The paper therefore contains useful information for software developers to help in specifying and designing simulation outputs which better respond to building designers’ needs
Candida Esophagitis: a Retrospective Study of Upper Gastrointestinal Endoscopic Grading and the Characteristic Profile
Background: Candida esophagitis is a common abnormality found on esophagogastroduodenoscopy (EGD) procedure in patients with recognizable risk factors. However, the finding is frequently incidental as most of them are asymptomatic. There has been no study on the characteristics of Candida esophagitis in Indonesia. The aim of this study was to describe the degree of Candida esophagitis and its characteristics in patients who underwent EGD procedure at Cipto Mangunkusumo Hospital. Method: A retrospective study was conducted on all EGD procedures at the Gastroenterology Procedure Room, Internal Medicine Department, Cipto Mangunkusumo Hospital, between January 2007 and December 2009 with a total of 2,311 samples. The study was carried out by visually examining all endoscopic procedures and grading them according to the Kodsi severity grading (1976), and evaluating medical records. Data analysis was performed using Microsoft Excel 2007. Results: During the study period, Candida esophagitis was found in 2.6% patients with predominant male (68.9%) and the average age was 49.8 ± 15 years. The chief complaints found were dyspepsia (34.4%), melena (21.3%) and dysphagia (4.9%) and 32.8% patients were asymptomatic. The most frequent risk factors were age ≥ 60 years old (28.3%), proton pump inhibitor or H2 receptor antagonist user (26.4%), and antibiotics (17.0%). Grade II Kodsi candidiasis was the most prevalent degree in this study (44.3%). Conclusion: Candida esophagitis was one frequent finding in endoscopy based on the complaint of dyspepsia in patients with certain risk factors. However, the results of this study still need further validation in prospective studies
Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural
Supported ionic liquid nanoparticles (SILnPs) having particle size ranging from 293 ± 2 to 610 ±
11 nm have been prepared by immobilization of ionic liquid, 1-(tri-ethoxy silyl-propyl)-
3-methyl-imidazolium hydrogen sulfate (IL-HSO4) on the surface of silica nanoparticles. The
catalytic activity of the prepared SILnPs was investigated for the dehydration of fructose to
5-hydroxymethylfurfural (HMF) in the presence of dimethylsulfoxide (DMSO) as a solvent. The
reaction temperature and amount of catalyst have been optimized for dehydration of fructose over
SILnPs using experimental design leading to 99.9% fructose conversion and 63.0% HMF yield
using silica SILnPs (d = 610 ± 11) nm at 130.0 ◦C in 30 min reaction time. The SILnPs catalysts
developed in this study present improved performances over other zeolites and strong acid ion
exchange resin catalysts, and they have been efficiently and very easily recycled over seven times
without any significant loss in fructose conversion and HMF yield
Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved
Experimental Investigation of the Effect of Transient Overvoltages on XLPE-insulated HVDC Cables
HVDC cables are subject to several types of impulses superimposed on the rated DC voltage during their service lifetime. Temporary Overvoltages (TOVs) and Superimposed Switching impulses (SSIs) are considered some of the most challenging due to the relatively long impulse duration. This paper aims at investigating experimentally the effect of TOVs and SSIs on XLPE insulation for extruded HVDC cables. 0.15-mm-thick DC-XLPE specimens, aged by applying TOVs and SSIs, are characterized using dielectric analyzer and Fourier Transform InfraRed spectroscopy (FTIR) to detect the aging effects on the insulation. Results show an increase in the imaginary part of permittivity, ε", accompanied with the appearance of additional dipolar polarization losses peaks. The amplitude and frequency of the aforementioned peaks vary with the amplitude and the number of applied TOVs and SSIs. An increase in electrical conductivity is also noticed with aging. FTIR results show absorbance peaks in the aged specimens likely due to the intramolecular bonds rupture accompanied with the formation of aging products. In summary, SSIs and TOVs cause a noticeable reduction of insulating properties in XLPE specimens. The higher the peak of the transient, the greater the aging effect
- …
