1,166 research outputs found

    Investigating stellar-mass black hole kicks

    Get PDF
    We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of order 10-30 Rsun. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks to the newly-formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the large distances above the Galactic plane achieved by some binaries. Further, we find that the distribution of natal kicks would seem to be similar to that of neutron stars, rather than one where the kick velocities are reduced by the ratio of black hole to neutron-star mass (i.e. where the kicks have the same momentum). This result is somewhat surprising; in many pictures of stellar-mass black-hole formation, one might have expected black holes to receive kicks having the same momentum (rather than the same speed) as those given to neutron stars.Comment: 13 pages, 8 figures, 4 tables. Accepted for publication in MNRA

    Detection of the magneto-structural phase coexistence in MnAs epilayers at a very early stage

    Full text link
    We report on the appearance of magnetic stripes in MnAs/GaAs(100) epilayers at temperatures well below the ferromagnetic transition of the system. The study has been performed by ferromagnetic resonance experiments (FMR) on MnAs epilayers grown on (100) and (111) GaAs substrates. The FMR spectra of the MnAs/GaAs(100) samples at 180 K reveal the appearance of zones of different magnetic behavior with respect to the low-temperature homogeneous ferromagnetic phase. The angular and the temperature dependence of the spectra serve us to detect the inter-growth of the non-magnetic phase into the ferromagnetic phase at a very early stage of the process. The experimental data show that the new phase nucleates in a self-arranged array of stripes in MnAs/GaAs(100) thin films while it grows randomly in the same films grown on GaAs(111).Comment: 8 pages, 5 figure

    Measurement of the Permanent Electric Dipole Moment of the 129^{129}Xe Atom

    Full text link
    We report on a new measurement of the CP-violating permanent Electric Dipole Moment (EDM) of the neutral 129^{129}Xe atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized 3^3He and 129^{129}Xe samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400~nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result, (4.7±6.4)1028\left(-4.7\pm6.4\right)\cdot 10^{-28} ecm, is consistent with zero and is used to place a new upper limit on the 129^{129}Xe EDM: dXe<1.51027|d_\text{Xe}|<1.5 \cdot 10^{-27} ecm (95% C.L.). We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model

    The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)

    Get PDF
    We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap availability of high performance image sensor chips to provide a low-cost and automated microscopy solution. Unlike the two major classes of lensless microscopy methods, optofluidic microscopy and digital in-line holography microscopy, this new approach is fully capable of working with cell cultures or any samples in which cells may be contiguously connected. With our prototype, we demonstrate the ability to image samples of area 6 mm × 4 mm at 660-nm resolution. As a further demonstration, we showed that the method can be applied to image color stained cell culture sample and to image and track cell culture growth directly within an incubator. Finally, we showed that this method can track embryonic stem cell differentiations over the entire sensor surface. Smart Petri dish based on this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks

    Jets and gamma-ray emission from isolated accreting black holes

    Full text link
    The large number of isolated black holes (IBHs) in the Galaxy, estimated to be 10^8, implies a very high density of 10^-4 pc^-3 and an average distance between IBHs of 10 pc. Our study shows that the magnetic flux, accumulated on the horizon of an IBH because of accretion of interstellar matter, allows the Blandford-Znajeck mechanism to be activated. Thus, electron-positron jets can be launched. We have performed 2D numerical modelling which allowed the jet power to be estimated. Their inferred properties make such jets a feasible electron accelerator which, in molecular clouds, allows electron energy to be boosted up to 1 PeV. For the conditions expected in molecular clouds the radiative cooling time should be comparable to the escape time. Thus these sources can contribute both to the population of unidentified point-like sources and to the local cosmic ray (CR) electron spectrum. The impact of the generated electron CRs depends on the diffusion rate inside molecular clouds (MCs). If the diffusion regime in a MC is similar to Galactic diffusion, the produced electrons should rapidly escape the cloud and contribute to the Galactic CR population at very high energies >100 TeV. However, due to the modest jet luminosity (at the level of 10^35 erg s^-1) and low filling factor of MC, these sources cannot make a significant contribution to the spectrum of cosmic ray electrons at lower energies. On the other hand, if the diffusion within MCs operates at a rate close to the Bohm limit, the CR electrons escaping from the source should be confined in the cloud, significantly contributing to the local density of CRs. The IC emission of these locally-generated CRs may explain the variety of gamma ray spectra detected from nearby MCs.Comment: 6 pages, accepted by MNRA

    Constraining the nature of the accreting binary in CXOGBS J174623.5-310550

    Get PDF
    We report optical and infrared observations of the X-ray source CXOGBS J174623.5-310550. This Galactic object was identified as a potential quiescent low-mass X-ray binary accreting from an M-type donor on the basis of optical spectroscopy and the broad Halpha emission line. The analysis of X-shooter spectroscopy covering 3 consecutive nights supports an M2/3-type spectral classification. Neither radial velocity variations nor rotational broadening is detected in the photospheric lines. No periodic variability is found in I- and r'-band light curves. We derive r' = 20.8, I = 19.2 and Ks = 16.6 for the optical and infrared counterparts with the M-type star contributing 90% to the I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial velocity variations implies that the M-type star is not the donor star in the X-ray binary. This could be an interloper or the outer body in a hierarchical triple. We constrain the accreting binary to be a < 2.2 hr orbital period eclipsing cataclysmic variable or a low-mass X-ray binary lying in the foreground of the Galactic Bulge.Comment: (9 pages, 5 figures, accepted for publication in MNRAS

    The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment

    Full text link
    Neutrino oscillation experiments have proved that neutrinos are massive particles, but can't determine their absolute mass scale. Therefore the neutrino mass is still an open question in elementary particle physics. An international collaboration is growing around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences and technical expertise in a common effort towards this challenging experiment. We discuss the different scenarios and the impact of MARE as a complement of KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11 workshop, Tokyo 200

    A FRAMEWORK ON MEDIA-EDUCATIONAL STRATEGIES TO CONTRAST ONLINE HATE SPEECH

    Get PDF

    Public opinion and environmental policy output: a cross-national analysis of energy policies in Europe

    Get PDF
    This article studies how public opinion is associated with the introduction of renewable energy policies in Europe. While research increasingly seeks to model the link between public opinion and environmental policies, the empirical evidence is largely based on a single case: the US. This limits the generalizability of findings and we argue accordingly for a systematic, quantitative study of how public opinion drives environmental policies in another context. Theoretically, we combine arguments behind the political survival of democratic leaders with electoral success and environmental politics. Ultimately, we suggest that office-seeking leaders introduce policies that seem favorable to the domestic audience; if the public prefers environmental protection, the government introduces such policies in turn. The main contribution of this research is the cross-country empirical analysis, where we combine data on the public's environmental attitudes and renewable energy policy outputs in a European context between 1974 and 2015. We show that as public opinion shifts towards prioritizing the environment, there is a significant and positive effect on the rate of renewable energy policy outputs by governments in Europe. To our knowledge, this is the first systematic, quantitative study of public opinion and environmental policies across a large set of countries, and we demonstrate that the mechanisms behind the introduction of renewable energy policies follow major trends across European states

    Mathematical model of blood and interstitial flow and lymph production in the liver.

    Get PDF
    We present a mathematical model of blood and interstitial flow in the liver. The liver is treated as a lattice of hexagonal \u2018classic\u2019 lobules, which are assumed to be long enough that end effects may be neglected and a two-dimensional problem considered. Since sinusoids and lymphatic vessels are numerous and small compared to the lobule, we use a homogenized approach, describing the sinusoidal and interstitial spaces as porous media. We model plasma filtration from sinusoids to the interstitium, lymph uptake by lymphatic ducts, and lymph outflow from the liver surface. Our results show that the effect of the liver surface only penetrates a depth of a few lobules\u2019 thickness into the tissue. Thus, we separately consider a single lobule lying sufficiently far from all external boundaries that we may regard it as being in an infinite lattice, and also a model of the region near the liver surface. The model predicts that slightly more lymph is produced by interstitial fluid flowing through the liver surface than that taken up by the lymphatic vessels in the liver and that the on-peritonealized region of the surface of the liver results in the total lymph production (uptake by lymphatics plus fluid crossing surface) being about 5 % more than if the entire surface were covered by the Glisson\u2013peritoneal membrane. Estimates of lymph outflow through the surface of the liver are in good agreement with experimental data. We also study the effect of non-physiological values of the controlling parameters, particularly focusing on the conditions of portal hypertension and ascites. To our knowledge, this is the first attempt to model lymph production in the liver. The model provides clinically relevant information about lymph outflow pathways and predicts the systemic response to pathological variations
    corecore