1,166 research outputs found
Investigating stellar-mass black hole kicks
We investigate whether stellar-mass black holes have to receive natal kicks
in order to explain the observed distribution of low-mass X-ray binaries
containing black holes within our Galaxy. Such binaries are the product of
binary evolution, where the massive primary has exploded forming a stellar-mass
black hole, probably after a common envelope phase where the system contracted
down to separations of order 10-30 Rsun. We perform population synthesis
calculations of these binaries, applying both kicks due to supernova mass-loss
and natal kicks to the newly-formed black hole. We then integrate the
trajectories of the binary systems within the Galactic potential. We find that
natal kicks are in fact necessary to reach the large distances above the
Galactic plane achieved by some binaries. Further, we find that the
distribution of natal kicks would seem to be similar to that of neutron stars,
rather than one where the kick velocities are reduced by the ratio of black
hole to neutron-star mass (i.e. where the kicks have the same momentum). This
result is somewhat surprising; in many pictures of stellar-mass black-hole
formation, one might have expected black holes to receive kicks having the same
momentum (rather than the same speed) as those given to neutron stars.Comment: 13 pages, 8 figures, 4 tables. Accepted for publication in MNRA
Detection of the magneto-structural phase coexistence in MnAs epilayers at a very early stage
We report on the appearance of magnetic stripes in MnAs/GaAs(100) epilayers
at temperatures well below the ferromagnetic transition of the system. The
study has been performed by ferromagnetic resonance experiments (FMR) on MnAs
epilayers grown on (100) and (111) GaAs substrates. The FMR spectra of the
MnAs/GaAs(100) samples at 180 K reveal the appearance of zones of different
magnetic behavior with respect to the low-temperature homogeneous ferromagnetic
phase. The angular and the temperature dependence of the spectra serve us to
detect the inter-growth of the non-magnetic phase into the ferromagnetic phase
at a very early stage of the process. The experimental data show that the new
phase nucleates in a self-arranged array of stripes in MnAs/GaAs(100) thin
films while it grows randomly in the same films grown on GaAs(111).Comment: 8 pages, 5 figure
Measurement of the Permanent Electric Dipole Moment of the Xe Atom
We report on a new measurement of the CP-violating permanent Electric Dipole
Moment (EDM) of the neutral Xe atom. Our experimental approach is based
on the detection of the free precession of co-located nuclear spin-polarized
He and Xe samples. The EDM measurement sensitivity benefits
strongly from long spin coherence times of several hours achieved in diluted
gases and homogeneous weak magnetic fields of about 400~nT. A finite EDM is
indicated by a change in the precession frequency, as an electric field is
periodically reversed with respect to the magnetic guiding field. Our result,
ecm, is consistent with zero and is
used to place a new upper limit on the Xe EDM: ecm (95% C.L.). We also discuss the implications of this result for
various CP-violating observables as they relate to theories of physics beyond
the standard model
The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)
We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap availability of high performance image sensor chips to provide a low-cost and automated microscopy solution. Unlike the two major classes of lensless microscopy methods, optofluidic microscopy and digital in-line holography microscopy, this new approach is fully capable of working with cell cultures or any samples in which cells may be contiguously connected. With our prototype, we demonstrate the ability to image samples of area 6 mm × 4 mm at 660-nm resolution. As a further demonstration, we showed that the method can be applied to image color stained cell culture sample and to image and track cell culture growth directly within an incubator. Finally, we showed that this method can track embryonic stem cell differentiations over the entire sensor surface. Smart Petri dish based on this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks
Jets and gamma-ray emission from isolated accreting black holes
The large number of isolated black holes (IBHs) in the Galaxy, estimated to
be 10^8, implies a very high density of 10^-4 pc^-3 and an average distance
between IBHs of 10 pc. Our study shows that the magnetic flux, accumulated on
the horizon of an IBH because of accretion of interstellar matter, allows the
Blandford-Znajeck mechanism to be activated. Thus, electron-positron jets can
be launched. We have performed 2D numerical modelling which allowed the jet
power to be estimated. Their inferred properties make such jets a feasible
electron accelerator which, in molecular clouds, allows electron energy to be
boosted up to 1 PeV. For the conditions expected in molecular clouds the
radiative cooling time should be comparable to the escape time. Thus these
sources can contribute both to the population of unidentified point-like
sources and to the local cosmic ray (CR) electron spectrum. The impact of the
generated electron CRs depends on the diffusion rate inside molecular clouds
(MCs). If the diffusion regime in a MC is similar to Galactic diffusion, the
produced electrons should rapidly escape the cloud and contribute to the
Galactic CR population at very high energies >100 TeV. However, due to the
modest jet luminosity (at the level of 10^35 erg s^-1) and low filling factor
of MC, these sources cannot make a significant contribution to the spectrum of
cosmic ray electrons at lower energies. On the other hand, if the diffusion
within MCs operates at a rate close to the Bohm limit, the CR electrons
escaping from the source should be confined in the cloud, significantly
contributing to the local density of CRs. The IC emission of these
locally-generated CRs may explain the variety of gamma ray spectra detected
from nearby MCs.Comment: 6 pages, accepted by MNRA
Constraining the nature of the accreting binary in CXOGBS J174623.5-310550
We report optical and infrared observations of the X-ray source CXOGBS
J174623.5-310550. This Galactic object was identified as a potential quiescent
low-mass X-ray binary accreting from an M-type donor on the basis of optical
spectroscopy and the broad Halpha emission line. The analysis of X-shooter
spectroscopy covering 3 consecutive nights supports an M2/3-type spectral
classification. Neither radial velocity variations nor rotational broadening is
detected in the photospheric lines. No periodic variability is found in I- and
r'-band light curves. We derive r' = 20.8, I = 19.2 and Ks = 16.6 for the
optical and infrared counterparts with the M-type star contributing 90% to the
I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial
velocity variations implies that the M-type star is not the donor star in the
X-ray binary. This could be an interloper or the outer body in a hierarchical
triple. We constrain the accreting binary to be a < 2.2 hr orbital period
eclipsing cataclysmic variable or a low-mass X-ray binary lying in the
foreground of the Galactic Bulge.Comment: (9 pages, 5 figures, accepted for publication in MNRAS
The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment
Neutrino oscillation experiments have proved that neutrinos are massive
particles, but can't determine their absolute mass scale. Therefore the
neutrino mass is still an open question in elementary particle physics. An
international collaboration is growing around the project of Microcalorimeter
Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass
with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences
and technical expertise in a common effort towards this challenging experiment.
We discuss the different scenarios and the impact of MARE as a complement of
KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11
workshop, Tokyo 200
Public opinion and environmental policy output: a cross-national analysis of energy policies in Europe
This article studies how public opinion is associated with the introduction of renewable energy policies in Europe. While research increasingly seeks to model the link between public opinion and environmental policies, the empirical evidence is largely based on a single case: the US. This limits the generalizability of findings and we argue accordingly for a systematic, quantitative study of how public opinion drives environmental policies in another context. Theoretically, we combine arguments behind the political survival of democratic leaders with electoral success and environmental politics. Ultimately, we suggest that office-seeking leaders introduce policies that seem favorable to the domestic audience; if the public prefers environmental protection, the government introduces such policies in turn. The main contribution of this research is the cross-country empirical analysis, where we combine data on the public's environmental attitudes and renewable energy policy outputs in a European context between 1974 and 2015. We show that as public opinion shifts towards prioritizing the environment, there is a significant and positive effect on the rate of renewable energy policy outputs by governments in Europe. To our knowledge, this is the first systematic, quantitative study of public opinion and environmental policies across a large set of countries, and we demonstrate that the mechanisms behind the introduction of renewable energy policies follow major trends across European states
Mathematical model of blood and interstitial flow and lymph production in the liver.
We present a mathematical model of blood and interstitial flow in the liver. The liver is treated as a lattice of hexagonal \u2018classic\u2019 lobules, which are assumed to be long enough that end effects may be neglected and a
two-dimensional problem considered. Since sinusoids and lymphatic vessels are numerous and small compared to the lobule, we use a homogenized approach, describing the sinusoidal and interstitial spaces as porous media. We model plasma filtration from sinusoids to the interstitium, lymph uptake by lymphatic ducts, and lymph outflow from the liver
surface. Our results show that the effect of the liver surface only penetrates a depth of a few lobules\u2019 thickness into the tissue. Thus, we separately consider a single lobule lying sufficiently far from all external boundaries that we may regard it as being in an infinite lattice, and also a model of the region near the liver surface. The model predicts that slightly more lymph is produced by interstitial fluid flowing through the liver surface than that taken up by the lymphatic vessels in the liver and that the on-peritonealized region of the surface of the liver results in the total lymph production (uptake by lymphatics plus fluid crossing surface) being about 5 % more than if the entire surface were covered by the Glisson\u2013peritoneal membrane. Estimates of lymph outflow through the surface of the liver are in good agreement with experimental data. We also study the effect of non-physiological values of the controlling parameters, particularly focusing
on the conditions of portal hypertension and ascites. To our knowledge, this is the first attempt to model lymph production in the liver. The model provides clinically relevant information about lymph outflow pathways and predicts the systemic response to pathological variations
- …
