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Abstract We present a mathematical model of blood and
interstitial flow in the liver. The liver is treated as a lat-
tice of hexagonal ‘classic’ lobules, which are assumed to
be long enough that end effects may be neglected and a
two-dimensional problem considered. Since sinusoids and
lymphatic vessels are numerous and small compared to the
lobule, we use a homogenized approach, describing the sinu-
soidal and interstitial spaces as porous media. We model
plasma filtration from sinusoids to the interstitium, lymph
uptake by lymphatic ducts, and lymph outflow from the liver
surface. Our results show that the effect of the liver surface
only penetrates a depth of a few lobules’ thickness into the
tissue. Thus, we separately consider a single lobule lying suf-
ficiently far from all external boundaries that we may regard
it as being in an infinite lattice, and also a model of the region
near the liver surface. The model predicts that slightly more
lymph is produced by interstitial fluid flowing through the
liver surface than that taken up by the lymphatic vessels in
the liver and that the non-peritonealized region of the sur-
face of the liver results in the total lymph production (uptake
by lymphatics plus fluid crossing surface) being about 5 %
more than if the entire surface were covered by the Glisson–
peritoneal membrane. Estimates of lymph outflow through
the surface of the liver are in good agreement with experi-
mental data. We also study the effect of non-physiological
values of the controlling parameters, particularly focusing
on the conditions of portal hypertension and ascites. To our
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knowledge, this is the first attempt to model lymph pro-
duction in the liver. The model provides clinically relevant
information about lymph outflow pathways and predicts the
systemic response to pathological variations.

Keywords Liver · Hemodynamics · Porous medium ·
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1 Introduction

The liver is one of the vital organs in the human body, and
it plays a fundamental role in numerous functions, including
protein synthesis, metabolism, bile secretion, and detoxifi-
cation. Diseases of the liver are increasingly prevalent in the
West, and they represent the fifth most common cause of
death in Europe. There are many possible causes of liver
disease, including alcohol, viruses, and drugs.

The liver has a circulatory system specific to its function.
It is supplied by two major blood vessels: the hepatic artery,
which contains fully oxygenated blood, and the hepatic por-
tal vein, which contains partially deoxygenated blood that is
rich in nutrients, since it originates from the intestines. Blood
flows out of the liver through the hepatic veins. Within the
liver, each of the hepatic artery and hepatic portal vein repeat-
edly bifurcates into successively smaller vessels forming two
trees of vessels. On the microscale, the terminal generation
of the trees of the hepatic artery and the hepatic portal vein
lies, together with bile ducts, in structures called portal tracts.
From the portal tracts, blood flows into the sinusoids, a net-
work of small, tortuous, interconnected vessels that carry
blood to the central vein, the terminal generation of the
hepatic venous tree of vessels. Through successive conflu-
ences, blood is carried to the hepatic veins that drain into the
inferior vena cava. There are typically around three to seven
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portal tracts supplying each central vein, and each portal tract
supplies about three central veins (Teutsch et al. 1999).

The sinusoids are lined by a layer of fenestrated endothe-
lium. Fenestrations are small holes of approximately 100 nm
diameter covering 2–3 % of the area (Burt et al. 2006), which
allow plasma to pass from the sinusoids to the space of Disse,
a region surrounding each of the sinusoids that is filled with
interstitial fluid. The flow from the sinusoids to the intersti-
tial space is driven by both mechanical and oncotic pressure
differences between the two spaces. The oncotic pressure
difference arises due to proteins in the plasma, but it is nor-
mally small compared to the mechanical pressure differences
(Laine et al. 1979). The rate of flow from the sinusoids to
the interstitium is given by the hepatic filtration coefficient
multiplied by the total pressure difference (mechanical plus
oncotic) between sinusoids and interstitium. An estimate of
this coefficient for cats was found by Greenway et al. (1969).

On the microscale, the liver can be visualized as being
composed of functional units called lobules (Vollmar and
Menger 2009). The classic model of a lobule is a prism with
a hexagonal cross section, a cylindrical central vein running
along the central axis of the prism, and portal tracts along each
of the six axial edges (see Fig. 1). The boundaries between
lobules are called vascular septa; in some species, such as the
pig, these are quite distinct, while in humans the distinction
between lobules is less clear (Lautt 2010).

Interstitial fluid is removed from the liver via one of two
pathways. The first is through the lymphatic ducts within
the liver. There are lymphatic vessels distributed throughout
the lobule, and these take up interstitial fluid actively at a
regulated rate; however, the dependence of the rate of uptake
upon the interstitial pressure and other parameters is not fully
known. Elk et al. (1988) performed experiments on livers of

anesthetized dogs to determine typical rates of uptake by
the lymphatic vessels. In their experiments, they determined
the effective resistance of the lymphatic vessels, that is, the
increase in interstitial pressure required to produce a unit
increase in volumetric flux taken up by the lymphatics. The
lymphatic vessels have valves to prevent backflow, and they
transport the fluid toward the main lymphatic vessels located
in the portal tracts, from where the fluid flows out of the
liver. The fluid eventually drains into the venous system at
the junction of the left subclavian vein and left jugular vein.

Secondly, interstitial fluid can leave the liver by passing
directly through its surface. Conditions of high intrahepatic
pressure lead to a pressure imbalance across the surface of the
liver, which drives more fluid across it. Different regions of
the surface have different properties: On the lower surface,
a double membrane comprising Glisson’s capsule and the
peritoneal membrane separates the liver from the peritoneal
cavity, while the upper surface of the liver is not peritoneal-
ized, and there is a space between the liver and the diaphragm
in which interstitial fluid can collect. Flow across the liver
surface is of particular interest in this paper, because if the
flow of interstitial fluid into the peritoneal cavity is too large,
fluid can build up in the cavity, leading to a condition called
ascites. Ascites, in turn, causes the peritoneal pressure to rise;
for example, Laine et al. (1979) performed experiments on
anesthetized dogs and found that for every 9.5 ml per kg body
weight added to the peritoneum, there is a 1 mmHg rise in
the pressure there.

In this paper, we investigate the effect of changes in blood
pressure within the liver on the production of lymph by the
liver. Such changes are common in small-for-size liver syn-
drome, which occurs when the functioning liver mass is too
small relative to the patient’s body weight and is a relatively

(a) (b)

Fig. 1 a Sketch of a cross section of a single lobule, showing relevant
geometrical parameters. b Sketch illustrating the arrangement of lob-
ules in the model liver. A section of the outer surface of the model liver
is also shown. The surface is assumed to be flat and the axes of the portal
tracts parallel to the surface. The surface cuts the lobules so that the out-

ermost lobules have area equal to the interior lobules, although they are
pentagonal, rather than hexagonal, as shown. With this arrangement,
the outer surface of the liver is at a distance L lob/4 from the nearest
portal tracts and 3L lob/4 from the nearest central veins
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Mathematical model of blood and interstitial flow 365

frequent complication after partial resection of the liver, after
a liver transplantation when the donor is smaller than the
recipient, or after living-donor liver transplantation, in both
donor and recipient.

There are some previous works on mathematical modeling
of the hemodynamics in the liver. Rani et al. (2006) developed
a computational fluid dynamics model of flow along a termi-
nal portal vein, hepatic artery, and two sinusoids with fenes-
trations. They used a non-Newtonian shear-thinning model
for the blood rheology. Van Der Plaats et al. (2004) and Deb-
baut et al. (2011) used electrical analog models to describe
the generations of vessels, finding the pressure and flow in
each generation. Hoehme et al. (2010) developed a model to
quantify regeneration of the liver after lobular damage.

Since the sinusoids are small, numerous, and intercon-
nected, it is reasonable to describe them as a porous medium,
and a few models have used this technique. Ricken et al.
(2010) developed a poroelastic model of the liver tissue and
combined this with a model of the development of sinu-
soidal orientation to model remodeling of the liver tissue
after injury. Bonfiglio et al. (2010) also considered a porous
medium model of a single classic hexagonal lobule and ana-
lyzed the effects of anisotropic permeability, non-Newtonian
effects, and compliance of the tissue. Debbaut et al. (2012a)
used a cast of a liver, combined with a computational fluid
mechanical simulation, to find the effective permeability of
the sinusoids in different directions through the tissue, while
Debbaut et al. (2012b) employed these data to develop a
three-dimensional lobular model, which they used to inves-
tigate the role of the vascular septa.

In this paper, we develop a mathematical model of blood
and interstitial fluid flow in a lobular model of the liver, in
order to estimate the rate of uptake of lymph and the flux of
fluid across the surface of the liver. Following Bonfiglio et al.
(2010) and Debbaut et al. (2012b), we treat the liver as com-
posed of lobules that are prisms all of equal length, and with
no variations in the third dimension. We use a porous medium
description of the tissue of the lobules, to describe both the
flow in the sinusoids and that in the interstitium. We assume
that each spatial point in the model represents a multitude of
both sinusoidal vessels and interstitial space, as illustrated in
Fig. 2. We prescribe the blood pressure at the portal tracts
and central veins, and we assume that blood vessels do not
cross the vascular septa from one lobule to its neighbor.

2 Mathematical model

2.1 Geometry

In the classic lobule model by Kiernan (1833), each lobule is
described as a regular hexagonal prism with portal tracts at
each vertex and a central vein along the axis. Since then, this
morphological description has been generally accepted as a

Fig. 2 Illustration of modeling assumption concerning the arrange-
ment of cells in the liver at the microscale: ‘H’—hepatocyte (typical
diameter 15µm); ‘S’—sinusoid (typical diameter 10µm, Burt et al.
2006); and ‘I’—interstitial space (typical width of space of Disse
approximately 500 nm, Straub et al. 2007)

good idealized representation of the liver lobular structure,
and it is reported in many anatomy textbooks. In this paper,
we adopt this model and model the entire liver as a lattice
of identical hexagonal lobules, each of which has a circular
central vein of diameter DCV along its axis and a number
of circular portal tracts of diameter DPT at each vertex, as
shown in Fig. 1.

We assume that the axial dimension of the lobules is long
compared to their width and that the axial pressure gradient
is sufficiently small, so that we may treat the flow as two-
dimensional in the cross-sectional plane.

The Glissonian–peritoneal membrane is treated as a cov-
ering of the lateral faces of the outermost lobules (and not the
end faces of the lobules, because end effects are neglected),
and similarly to the bare part of the liver surface. We denote
the total volume of the liver by Vliv and its total surface area
by Aliv (estimated in Appendix 6.1) and define χ as the pro-
portion of the surface area covered by the bare area (the rest
being covered by the Glisson–peritoneal membrane). We also
assume that the axes of the lobules are parallel to the surface
and furthermore assume that the surface cuts the lobules in
such a way that the areas of the outermost lobules (now pen-
tagonal prisms) are the same as those of the interior hexagonal
lobules, as shown in Fig. 1b.

2.2 Governing equations

Within each lobule, the sinusoids and lymphatic vessels are
numerous, and they are small compared to the lobule size.
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366 J. H. Siggers et al.

This motivates using a homogenized model for the flow in
the sinusoids and in the interstitial space, similar to those
considered by Bonfiglio et al. (2010); Debbaut et al. (2012b)
and Ricken et al. (2010). We work in terms of the spatially
averaged flux per unit area u instead of the particle velocities
v; the spatially averaged flux is the Darcy velocity. In partic-
ular, we introduce uS and uI as the volume-averaged flux per
unit area in the sinusoids and in the interstitium, respectively,
defined as

uS = 1

Ω

∫∫∫
ΩS

vdΩ, uI = 1

Ω

∫∫∫
ΩI

vdΩ. (1)

In the above expressions, Ω is an elementary volume,
which is significantly larger than the microscale (see Fig. 2)
but much smaller than the characteristic scale of a lobule.
Moreover, ΩS is the blood volume contained within Ω and
ΩI the volume of interstitial space in Ω , so that φS = ΩS/Ω

and φI = ΩI /Ω are the corresponding porosities, with φS +
φI ≤ 1. We model the flow using Darcy’s law for flow in a
porous medium. Thus,

uS = − kS

μS
∇ pS, uI = − kI

μI
∇ pI , (2)

where pS and pI are the mechanical pressures of the blood
and interstitial fluid, respectively, kS and kI are the perme-
abilities of the sinusoids and interstitial space, respectively,
μS is the viscosity of blood, and μI is the viscosity of inter-
stitial fluid. The value of kI is estimated in Appendix 6.2.

Following Laine et al. (1979), we assume that fluid passes
from the sinusoids to the interstitium through the fenes-
trations in the walls of the endothelial cells at a rate pro-
portional to the pressure difference between the blood and
interstitial fluid. The effective pressure difference equals
the mechanical pressure difference plus the oncotic pres-
sure difference, but Laine et al. (1979) argue that both the
osmotic reflection coefficient and the typical oncotic pres-
sure differences are small, meaning that the flux of plasma
from sinusoids to interstitium per unit volume of liver tissue
only depends on the mechanical pressure difference and is
given by

qw = C f (pS − pI ) , (3)

where C f is the hepatic filtration coefficient, equal to the
volume flux from the microcirculatory system to the intersti-
tium per unit pressure drop per unit volume of tissue, found
experimentally by Greenway et al. (1969) (see also Appen-
dix 6.3).

Within the interstitium, following Elk et al. (1988), we
assume that lymph uptake follows a linear relationship

ql = Cl max(pI − p0, 0), (4)

where Cl is the conductance of the lymphatic vessels and p0

is the pressure within the flowing lymph; negative uptake is
not possible, due to the presence of valves. See also the papers
by Stewart and Laine (2001) and by Quick et al. (2008), and
Appendix 6.4.

Applying conservation of mass in both the sinusoids and
interstitium, we have

∇ · uS + qw = 0, ∇ · uI − qw + ql = 0. (5)

We can rewrite the system of Eqs. (2)–(5) in terms of the
pressures alone as

− kS

μS
∇2 pS + C f (pS − pI ) = 0, (6)

− kI

μI
∇2 pI − C f (pS − pI ) + Cl max(pI − p0, 0) = 0.

(7)

2.3 Boundary conditions

We assume that blood does not flow across boundaries
between neighboring lobules, due to the presence of the vas-
cular septa, while interstitial fluid flows freely between them,
the former condition corresponding to no flux and the latter
to continuity of pressure and flux at the boundaries.

At the boundaries of the portal tracts and central veins,
and for both the sinusoidal space and the interstitial space, we
could choose to prescribe either the pressure or the flux there.
In this paper, since there are more relevant data available on
the blood pressure, we prescribe the sinusoidal pressures,
which are pS,PT at the portal tracts and pS,CV at the central
veins. In Sect. 3.3, we argue that reasonable choices of the
boundary conditions on the interstitial flow and pressure at
the portal tracts and central veins do not significantly affect
the results, and in this paper, we assume that there is no flux
of interstitial fluid into these vessels.

At the outer surface of the liver, we assume that no blood
crosses the surface, corresponding to a no-flux condition, and
for the interstitial fluid, we assume that the conductivity of
the surface for the interstitial flow equals M , and thus,

uI · n = M (pI − pext) , (8)

where pext is the pressure external to the liver. The liver
surface has two distinct regions with different properties:

– the ‘bare area’ at the upper surface, which has perme-
ability M = MB A and external pressure pext = pDS ,
and

– the lower surface, which is covered by the Glissonian–
peritoneal membrane, with permeability M = MG P and
external pressure pext = pPC .
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Mathematical model of blood and interstitial flow 367

2.4 Parameter values

A list of the relevant physiological parameters and their typ-
ical values is given in Table 1, along with references. These
values will be used to produce the results presented in this
paper, except where stated otherwise.

2.5 Numerical computation

We developed a code to simulate the mathematical model
using the commercial software COMSOL Multiphysics,
which uses a finite element algorithm. The results were vali-
dated by successively refining the mesh and checking for con-
vergence, and also comparing against previous data, where
possible. In Appendix 5, we also present the analytical solu-
tion of a similar problem, in which portal tracts and cen-
trilobular veins are treated as point sources and point sinks,
respectively, and their strength is prescribed, rather than the
value of the pressure.

The graphical results presented in this paper were plotted
using either COMSOL Multiphysics or Matlab.

3 Results and discussion

3.1 Single lobule

We first consider the solution for a single lobule in an
unbounded lattice of lobules, representing a lobule well into
the interior of the liver. Due to the symmetrical setting of the
lobule, we apply no-flux boundary conditions on the intersti-
tial flow at each of its straight edges.

With the parameter values listed in Table 1, the sinusoidal
and interstitial pressures are shown in Fig. 3. As expected,
the sinusoidal pressure peaks near the portal tracts and is
minimized near the central vein. The sinusoidal pressure in
the absence of interstitial flow (C f = 0), which was studied
by Bonfiglio et al. (2010), only differs by about 0.008 % from
that obtained in this study (using the same parameter values).

Table 1 Typical values of physiological parameters taken from the literature

Symbol Description Typical value Ref

L lob Typical distance between neighboring
portal tracts

500 µm Estimated from Burt et al. (2006) and
Lautt (2010)

DPT Diameter of portal tract 50 µm Bonfiglio et al. (2010)

DCV Diameter of central vein 75 µm Bonfiglio et al. (2010)

Vliv Volume of tissue in liver 1,474 cm3 Wynne et al. (1989) (based on 24-year-olds)

Aliv Surface area of liver 1,190 cm2 See Appendix 6.1

χ Proportion of the surface of the liver, that is,
bare area

0.2 Estimated from Gray’s Anatomy of
the Human Body (1918)

kS Permeability of sinusoidal space 1.56 × 10−14 m2 Debbaut et al. (2012a)

kI Permeability of interstitial space 0.002 kS = 3.12 × 10−17 m2 See Appendix 6.2

μS Effective dynamic viscosity of sinusoidal blood 1.33μI = 0.0024 Pa s Derived from Eq. (30) in Secomb and
Pries (2007), using sinusoidal diameter
10 µm (Burt et al. 2006)

μI Dynamic viscosity of interstitial plasma 0.0018 Pa s Wells and Merrill (1961)

C f Hepatic filtration coefficient 5.3 × 10−5/(mmHg s) See Appendix 6.3

Cl Lymphatic conductance 5.9 × 10−7/(mmHg s) See Appendix 6.4

p0 Pressure in the flowing lymph Use 0

pS,PT Sinusoidal pressure at the portal tracts 4.4 mmHg Bonfiglio et al. (2010)

pS,CV Sinusoidal pressure at the central veins 1.5 mmHg Bonfiglio et al. (2010)

MB A Permeability of upper surface of liver Use ∞
MG P Permeability of Glissonian–peritoneal membrane 5.7 × 10−3ml/h/cmH2O/cm2

= 2.15 × 10−8 m s−1mmHg−1
Negrini et al. (1990)

pDS Pressure in diaphragmatic space Use 0

pPC Pressure in peritoneal cavity Use 0

Qblood Flux of blood through the liver 1,717 ml/min = 2.9 × 10−5 m3/s Wynne et al. (1989) (based on 24-year-olds)

γ Fraction of blood entering the liver
that is taken up by the lymphatics
under normal conditions

1.0 × 10−4 See Appendix 6.5

The rows corresponding to N and L liv have been deleted

123
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Fig. 3 a Sinusoidal and b interstitial pressures in the model hexagonal
lobule (values in mmHg). Contours are spaced by 0.2 mmHg in (a) and
by 0.05 mmHg in (b). Cuts 1 (black) and 2 (white) are shown in (a).
Axes in units of µm

The interstitial pressure follows a similar qualitative pattern,
but its range is only about 20 % of that of pS . The ranges can
be seen in Fig. 4, which shows the pressure on two cut lines
through the lobule. The pressure is minimized at the central
vein and rises steeply away from this point, which is also
where the fastest Darcy velocities are obtained.

Figure 5 shows the magnitudes of the Darcy velocities
in the sinusoids and interstitium. In the models by Bon-
figlio et al. (2010) and Debbaut et al. (2012b), it was found
that the magnitude is maximized near the vessels and mini-
mized at points midway between portal tracts, which is also
found in this model. On the other hand, interstitial velocity is
minimized near the vessels, due to the boundary conditions
imposed there.

The total volume flux of blood into the liver can be esti-
mated using the following formula:

Qblood = Vliv

3
√

3L2
lob/2

∫
−n · uS dl, (9)

where n is the outward-pointing unit normal vector, and
the integral is taken around the edge of the lobule. We find
this to be approximately 0.66 l/min, which is around 39 %
of the measured physiological value, 1.717 l/min (Wynne
et al. 1989). Using the higher value of the permeability,
3.3 × 10−13 m2, estimated by Bonfiglio et al. (2010) (and
a proportionately higher value of kI , given by Eq. 37), we
find Qblood ≈ 14.0 l/min, about eight times the physiological
value, which is almost exactly in proportion to the increase
in kS .

It is also of interest to find the rate of fluid taken up by the
lymphatics, which equals the average flux per unit volume,
ql , integrated over the volume of the liver:

QL = Vliv

3
√

3L2
lob/2

∫

Cross-sectional area

ql d A

= Vliv

3
√

3L2
lob/2

∫

Cross-sectional area

Cl max(pI − p0, 0)d A.

(10)

This gives approximately 0.17 ml/min, corresponding to
about 0.026 % of the total blood volume flux, which is
slightly higher than the experimentally derived proportion,
γ ≈ 0.01%, estimated in Appendix 6.5.

The principle of mass conservation implies that there is
a relationship between the spatial averages of the pressures,
owing to the fact that the flux of blood into the sinusoids
minus the flux out equals the net volume flow rate from sinu-
soids to interstitium equals the rate of uptake of lymph. As
long as pI > p0 everywhere (which is expected to be the
case in normal physiological conditions), we have

pI = C f pS + Cl p0

C f + Cl
,

where a bar indicates the spatial average. This equation can
also be derived by integrating Eq. (7) over the domain.
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Fig. 4 Sinusoidal and
interstitial pressures on the cuts
shown in Fig. 3

3.2 Multiple lobules

Simulations on a lattice consisting of as many lobules as was
possible to resolve indicate that the fluid pressure distribu-
tion in the lobules that are away from the outer boundary of
the model is very close to the pressures in the single lobule
simulation that was described in Sect. 3.1. Thus, the effects
of the outer surface of the liver seem to be confined to those
lobules that are very close to, or bordering, the surface. This
suggests that the arrangement of the interior lobules does not
significantly influence the rate of interstitial fluid crossing
the liver surface; instead, it depends only on the arrangement
of the lobules near the outer surface. Thus, in order to esti-
mate the flux across the surface, there is no need to consider
a model incorporating the details of the whole liver, and only
a model of the near-surface region is required. Therefore, in
this section, we consider a simulation of the flow and pres-
sure in a few lobules in a region that borders on the outer
surface (see Fig. 6).

The interstitial pressure in the few outermost lobules at
the Glissonian–peritoneal membrane is shown in Fig. 7a.
As expected, the interstitial pressure in the innermost lob-

ules in this model is similar to that of the single lobule pre-
sented in Sect. 3.1, while the pressure distributions in the
two outermost lobules are visibly different, which is due to
the boundary conditions imposed at the outer boundary. The
range of interstitial pressures in the outermost lobule is about
six times that of an internal lobule. Figure 7b shows the inter-
stitial pressure in the outermost lobules near to the bare area.
In this case, the effect of the liver surface penetrates through
a larger number of lobules than it does near the Glissonian–
peritoneal cavity, so a larger number of lobules are needed to
resolve the solution. As in Fig. 7a, the pressure distributions
in the innermost lobules in Fig. 7b are similar to that in the
single lobule solution in Sect. 3.1. The range of interstitial
fluid pressure in the outermost lobule at the bare area is about
nine times that of the inner lobules.

The fluid loss through the surface of the liver equals the
average flux per unit area through the surface multiplied
by the surface area. Thus, the flux through the Glissonian–
peritoneal membrane equals

QG P = AG P

Ledge

∫

edge

uI · n dl
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Fig. 5 a Sinusoidal and b interstitial flows in the model (values in m/s).
The shading and contours show the magnitude of the Darcy veloc-
ity (darker regions indicate faster flow), and arrows indicate direc-
tion and magnitude of the flow. The contours in (a) are in intervals
of 2 × 10−9 m/s, and those in (b) are in intervals of 5 × 10−10 m/s

= (1 − χ)
Aliv

Ledge

∫

edge

MG P (pI − pPC ) dl

≈ 0.14 ml/min, (11)

where AG P = (1 − χ)Aliv is the area covered by the
Glissonian–peritoneal membrane, the integral is taken along
the lower edge of the bottom lobule in Fig. 7a, and the numer-

Fig. 6 Sketch of the model of the outermost layers of lobules used in
numerical simulations to find the behavior in the region near the surface
of the liver. Different numbers of lobules were used for different sim-
ulations (see, e.g., Fig. 7). Filled circles represent the centers of portal
tracts, and crosses represent those of central veins. The thick line at the
bottom represents the outer surface of the liver, on which the boundary
condition (8) is used. The other solid lines represent the boundaries of
the lobules, and the dashed lines represent lines of symmetry. No-flux
conditions are imposed at all the outer edges of the model due to sym-
metry (except for the bottom edge), and the boundary conditions on the
interior boundaries are described in Sect. 2.3

ical value is derived using the parameter values in Table 1.
Similarly, the flux through the bare area is given by

Q B A = AB A

Ledge

∫

edge

uI · n dl

= −χ
kI Aliv

μI Ledge

∫

edge

n · ∇ pI dl

≈ 0.051 ml/min, (12)

where AB A = χ Aliv is the bare area, and the integral is taken
along the bottom edge in Fig. 7b. The proportion of the space
covered by the bare area, χ , is not well known: However,
the results presented here are qualitatively independent of
its value. The total flux crossing the surface is Qsurface =
QG P + Q B A ≈ 0.19 ml/min under normal physiological
conditions, which is about 0.028 % of the flux Qblood listed
in Table 1, and about 1.1 times QL . This implies that the bare
area leads to an increase in the total flux crossing the liver
surface by around 10 % compared to the flux that would be
obtained if the entire surface were peritonealized.
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Mathematical model of blood and interstitial flow 371

Fig. 7 Interstitial pressure in the model near a boundary of the liver
(values in mmHg). a M = 2.15 × 10−8 m/s/mmHg, representative
of lobules near the Glissonian–peritoneal membrane, and b M = ∞,
representative of lobules near the bare area. The contours are spaced by
a 0.05 mmHg, b 0.1 mmHg

The total rate of lymph production by the liver equals
Qliver−lymph = QL + Qsurface ≈ 0.36 ml/min, which corre-
sponds to 0.51 liters per day of fluid production; this is of
the same order of magnitude as the measured physiological
values.

3.3 Effect of abnormal physiology and variation
in the model parameter values

In this section we consider the effect of changing certain
model parameters on the rates of lymph and peritoneal fluid
production; we investigate the parameters whose values are
uncertain and also parameters that are known to vary in med-
ical conditions of interest.

One of the parameters to which the sensitivity of the model
is of most interest is the sinusoidal pressure at the portal tracts,
because this is known to increase during portal hypertension
in small-for-size liver syndrome. As can be seen in Fig. 8, the
flows increase linearly with increasing pressure, and the rate
is about 0.032 ml/min per mmHg pressure rise for lymphatic
uptake and about 0.035 ml/min per mmHg for fluid crossing
the liver surface.

In Fig. 9 we show the effect of changing the distance
between neighboring portal tracts L lob on lymph uptake in
the liver and production of peritoneal fluid by the liver (a)
and on blood flux (b). The first figure shows that the effect of
the lobule size on lymph flow is fairly small over a very wide
range of values of L lob (much wider than physiologically
realistic). The effect becomes strong only for unrealistically
small values of the size of the lobule. This is because, in this
case, the lymph has to flow around the vessels that for small
values of L lob occupy a large percentage of the whole cross
section of the lobule. On the other hand, as expected, blood
flux is extremely sensitive to the lobule size, as shown in
Fig. 10b.

Since histological images show wide variation in vessel
diameters, in Fig. 10a we plot the effect of vessel diameter
on the flux. Increasing the size of the portal tracts increases
both the uptake of lymph and the production of fluid by the
liver. This is because in this case there is less resistance near
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Fig. 9 Effect of change of lobule side length on the rates of lymph
uptake in the liver and production of peritoneal fluid by the liver (a) and
blood flux (b)

the portal tracts, meaning the sinusoidal pressure is higher
in regions close to them. In turn, this means the interstitial
pressure has a higher average value, and thus, both the uptake
of lymph (directly related to interstitial pressure via Eq. (4))
and the flux across the surface of the liver (given by (8)) are
increased. Increasing the size of the central vein decreases
both of these fluxes because there is less resistance, meaning
the sinusoidal pressure is lower near it, and thus, the average
interstitial pressure is smaller too, leading to both a lower
rate of lymphatic uptake and also less fluid crossing the liver
surface. Increasing the diameters of both portal tracts and
central veins in proportion to one another has relatively little
effect on these fluxes because the sinusoidal pressure distrib-
ution stays approximately unchanged, and thus, the intersti-
tial pressure is largely unaffected. The flux of blood, shown
in Fig. 10b, increases monotonically if the size of any ves-
sel increases, since the vessel’s surface area increases, which
decreases the resistance to blood flow. The size of the cen-
tral vein has a greater effect on the flux than the portal tracts,
because there are more portal tracts, so they collectively offer
less resistance.
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Fig. 10 Effect of change of vessel diameter on the rates of a lymph
uptake and flow across the surface of the liver and b flux of blood through
the liver. In (a) only, solid symbols—QL ; open symbols—Qsurface. In
both (a) and (b), circles denote the effect of changing DPT only, squares
denote the effect of changing DCV only, and diamonds denote the effect
of changing both DPT and DCV simultaneously

During ascites, the peritoneal pressure increases. In Fig. 11
we investigate the effect of different values of pext. For sim-
plicity, we used pPC = pDS and denote them both by pext.
In this case, the lymph uptake, QL , does not change signif-
icantly, whereas the outflow from the liver surface, Qsurface,
decreases significantly and, according to the model, might
even be reversed. Although the mathematical boundary con-
dition (8) does not prevent flow from the abdomen to the liver,
we are not aware of any evidence of its possible occurrence.

We also investigated the effect of changing the value of
the flowing lymph pressure, p0, as values for this parameter
were not found in the literature, which is shown in Fig. 12.
Increasing p0 has only a small effect on the outflow from
the liver surface, whereas it strongly affects the uptake from
lymphatic vessels, which decreases approximately linearly
with p0 as p0 increases. For sufficiently large p0, it van-
ishes, because pI < p0 everywhere, so no fluid is taken up
by the lymphatics. We also note that the effects of pext on
Qsurface and of p0 on QL are analogous to one another; how-
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cavity, pPC , and in the diaphragmatic space, pDS (pPC = pDS is
assumed, and these pressures are collectively denoted by pext), on the
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Fig. 12 Effect of flowing lymph pressure p0 on the rates of uptake by
the lymphatics and flow through the surface of the liver

ever, there is a qualitative difference for high values of these
external pressures, which occurs because, for high p0, the
valves in the lymphangions prevent backflow, and there is no
corresponding mechanics for high pext.

The permeability of the interstitial space, kI , could not
reliably be determined from experimental data, and it is esti-
mated in Appendix 6.2. In Fig. 13 we show how the lymph
production depends on kI . The flux through the surface
increases as kI increases, and tends to zero for vanishingly
small values of the permeability, while QL is unaffected by
the value of kI . The increase in Qsurface is due to a reduction
in the resistance of the outflow pathway through the liver
surface for higher values of kI .

Since there could be interstitial flow within the portal tracts
and central veins, the authors also considered a modified
model. In this model, within the portal tracts and central
veins, the interstitial flow satisfies
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Fig. 13 Effect of the value of the permeability of the interstitial space,
kI , on the rates of lymph production. For larger values of kI , a larger
number of lobules are needed in the model to resolve the simulation;
for example, for kI four times the default value, we used a model with
10 lobules

∇ · uI + ql =0 ⇒ − kI

μI
∇2 pI +Cl max(pI − p0, 0)=0,

(13)

along with continuity of pressure and flux conditions on the
interface between the vessel and the interior of the lobule.
Implementing these conditions leads to an increase in the
predicted lymph production of just under 1 %, while the pro-
portionate change in the predicted overall blood flow was
much smaller.

We also investigated the possible effect of alternative geo-
metrical arrangements of the lobules. To do this, we con-
sidered a cuboid liver model consisting of lobules with a
square cross section. We scaled the lobules so that their cross-
sectional areas and the proportion of this area taken up by
both portal tracts and central veins were preserved. We also
ensured that the surface area and volume of the liver were pre-
served. With this model, we found that the predicted blood
flow was reduced by about 24 %, while both the rate of lymph
uptake and the total flux of fluid across the liver surface were
about 12 % smaller than those in the case of the hexagonal lat-
tice. The reduction in blood flow is to be expected; since the
hexagonal arrangement has six portal tracts supplying each
central vein, that arrangement has less resistance to flow than
the square one.

Finally, we note that the results presented are based on the
geometrical assumption that the lobules are orientated face-
on to the surface of the liver, as opposed to end-on. To our
knowledge, there is no indication about which case is more
realistic. However, since our model suggests that variations
in interstitial pressure are small, it is likely that such changes
would have a relatively small effect on the predicted rate of
lymph production.
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4 Concluding remarks

We have developed a new model of the microcirculation in
the liver, which incorporates production and flow of lymph
through the two major pathways: uptake by the lymphatic
vessels and flow out of the liver through the surface into the
peritoneal cavity or diaphragmatic space. We were able to
estimate nearly all of the parameters from experimentally
derived measurements, and we showed that the expected
effect of geometrical variations in the lobules is relatively
small. Even though the model is idealized, it provides use-
ful information about lymph outflow and response to patho-
logical states. The results of the model are consistent with
physiological measurements.

The model is based on numerous simplifying assumptions
on the geometry and mechanics. The most major geometrical
assumptions are as follows:

– Cylindrical vessels (portal tracts and central veins) that
are parallel to one another.

– Vessels arranged in a regular hexagonal lattice.
– With regard to the surface of the model liver, the vessels

run parallel to it, the outermost lobules have the same
cross-sectional area (see Fig. 1).

The main assumptions on the mechanics are as follows:

– Both sinusoids and interstitium can be modelled as a
porous material obeying Darcy’s law.

– The flow is two-dimensional.
– Flux from sinusoids to interstitium is proportional to pres-

sure difference (no oncotic effects).
– Lymph uptake has a linear relationship to pressure.
– Flux across liver surface is proportional to pressure dif-

ference.

The major weaknesses of the model are as follows:

– No account of effects of irregular geometry, especially
near the surface.

– Various pressures are required as inputs to the model
(pressures in portal tracts and central veins, base lym-
phatic pressure, and pressures in peritoneal cavity and
diaphragmatic space). In practice, these pressures vary in
response to blood flow conditions, and ideally, the model
should be extended so that these are an output.

– Model cannot account for other orientations of lobules
relative to the surface.

Many processes take place during liver disease, some of
which are not fully understood. Gordon (2012) describes the
current understanding of the main processes leading to the
development of ascites. These commonly include fibrosis of
the liver and active vasodilation, which are not accounted for
in the model described in this paper. There is scope to extend

our model to include some of these effects, and this should
be undertaken in a future work.

Under normal physiological conditions, spatial variations
in the interstitial pressure are much smaller than those in the
sinusoidal pressure, while approximately 1.1 times as much
fluid leaves the liver through the surface as that leaving via
the lymphatic ducts.

If the portal pressure were increased, such as would occur
in small-for-size liver syndrome, the model predicts signifi-
cant increases both in the uptake by the lymphatic ducts and
in the rate of fluid leaving through the surface of the liver. In
order to develop this model into a predictive model for the
severity of ascites, a model of the portal venous tree must
be added so that pressures in the portal tracts can be related
to those in the portal vein, and a model of the peritoneal
cavity must be added so that the equilibrium pressure for a
given flow rate of lymph from the liver can be found. The
extended model would, for example, enable us to predict the
consequences of different applied drainage rates.
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5 Appendix A: Analytical model

Here we consider a simplified model of a lobule in the inte-
rior of the liver that we can solve analytically, which is based
on the analytical model by Bonfiglio et al. (2010). As in that
paper, we consider a regular lattice of lobules with portal
tracts at the vertices and central veins along the axis and
assume symmetry, but for simplicity, we treat these vessels
as points in the plane. We denote by xPT,i the location of the
i th portal tract, and by xCV, j the location of the j th central
vein. In the case of point vessels, we cannot prescribe the
sinusoidal and interstitial pressures there, so instead we pre-
scribe the fluxes per unit length of the vessels. We assume
that the flux of interstitial fluid from each of the portal tracts
and central veins into the interstitium is zero, since these ves-
sels have zero size in the model. The total length of all the
lobules is the volume of the liver divided by the area of a lob-
ule, Vliv/(3

√
3L2

lob/2), and thus, the total length of the portal
tracts is twice this value. The volumetric flux of blood per
unit length of portal tract from the portal tract into the sinu-
soids is assumed to be homogeneous throughout the model
and equal to

qS,PT = Qblood

2Vliv/(3
√

3L2
lob/2)

≈ 6.3 × 10−9 m2/s, (14)
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where we used the flux found in the numerical calculations
in the main part of the paper, rather than the physiological
flux, for the purposes of comparison. We also assume that
the volumetric fluxes from the sinusoids into the central vein
per unit length are homogeneous and define these as

qS,CV = 2 (1 − γ ) qS,PT , (15)

where γ is the fraction of blood that is taken up by the lym-
phatic vessels, which is estimated in Appendix 6.5. Across
the boundaries of the lobules, there is no flux in the sinusoids
and free flow in the interstitial space.

The principle of superposition allows us to write the solu-
tions of the governing Eqs. (6) and (7) as

pS =
∑

Portal tracts,i

pS,PT,i +
∑

Central veins, j

pS,CV, j , (16)

pI =
∑

Portal tracts,i

pI,PT,i +
∑

Central veins, j

pI,CV, j , (17)

where pS,PT,i and pI,PT,i are the pressures in the sinusoids
and the interstitium, respectively, in the case with a single
portal tract (with the same boundary conditions) at xPT,i and
no central veins, and pS,CV, j and pI,CV, j are the correspond-
ing pressures in the case with a single central vein at xCV, j .

Solving (6) for pI , substituting into (7), and rearranging,
we obtain a single governing equation for pS :(

∇2 − λ2
1

) (
∇2 − λ2

2

)
(pS − p0) = 0, (18)

where

λ1,2 =
√√√√

α ±
√

α2 − ClC f μSμI

kSkI
, (19)

α = 1

2

(
C f

(
μS

kS
+ μI

kI

)
+ ClμI

kI

)
. (20)

Assuming that the pressures pS,PT,i and pI,PT,i are
axisymmetric about the portal tract at xPT,i ,

pS,PT,i = C1 K0
(
λ1rPT,i

) + C2 K0
(
λ2rPT,i

)
, (21)

where rPT,i is the distance from xPT,i , K0 is a modified
Bessel function of the second kind, C1 and C2 are constants
to be determined by applying boundary conditions, and we
have used the fact that the pressures must decay far from
the vessel to eliminate the modified Bessel functions I0 that
would also appear in the general solution. Hence,

pI,PT,i = pS,PT,i − kS

C f μS
∇2 pS,PT,i

= C1

(
1 − kSλ2

1

C f μS

)
K0

(
λ1rPT,i

)

+ C2

(
1 − kSλ2

2

C f μS

)
K0

(
λ2rPT,i

)
. (22)

Similarly

pS,CV, j = C3 K0
(
λ1rCV, j

) + C3 K0
(
λ2rCV, j

)
, (23)

pI,CV, j = pS,CV, j − kS

C f μS
∇2 pS,CV, j

= C3

(
1 − kSλ

2
1

C f μS

)
K0

(
λ1rCV, j

)

+ C4

(
1 − kSλ

2
2

C f μS

)
K0

(
λ2rCV, j

)
, (24)

where rCV, j is the distance from the j th central vein and C3

and C4 are constants to be determined.
The volumetric flux per unit length out of the i th portal

tract into the sinusoids equals

qS,PT = lim
ε→0

∮

rPT,i =ε

n · u dl

= lim
ε→0

2πε

(
− kS

μS

) (
λ1C1 K ′

0 (λ1ε)

+ λ2C2 K ′
0 (λ2ε)

)

= 2πkS

μS
(C1 + C2) , (25)

where we used the fact that limz→0(zK ′
0(z)) = −1, and,

similarly, the flux per unit length from sinusoids to central
vein is

qS,CV = −2πkS

μS
(C3 + C4) , (26)

where the minus sign comes from the direction of the flux.
The corresponding fluxes per unit length from the portal
tracts into the interstitium and from the interstitium into the
central vein both equal to zero, and hence,

0 = 2πkI

μI

((
1− kSλ2

1

C f μS

)
C1+

(
1 − kSλ

2
2

C f μS

)
C2

)
, (27)

0 = 2πkI

μI

((
1− kSλ2

1

C f μS

)
C3+

(
1 − kSλ

2
2

C f μS

)
C4

)
. (28)

Solving these for the constants yields

C1 = μS(C f μS/kS − λ2
2)

2πkS(λ
2
1 − λ2

2)
qS,PT , (29)

C2 = −μS(C f μS/kS − λ2
1)

2πkS(λ2
1 − λ2

2)
qS,PT , (30)

C3 = −μS(C f μS/kS − λ2
2)

2πkS(λ2
1 − λ2

2)
qS,CV , (31)

C4 = μS(C f μS/kS − λ2
1)

2πkS(λ
2
1 − λ2

2)
qS,CV . (32)
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Substituting these expressions into (21)–(24), and then
into (16) and (17), we obtain expressions for the pressures:

pS = μS(C f μS/kS − λ2
2)

2πkS(λ
2
1 − λ2

2)

×
⎛
⎝qS,PT

∑
Portal tracts,i

K0
(
λ1rPT,i

)

− qS,CV

∑
Central veins, j

K0
(
λ1rCV, j

)
⎞
⎠

+ μS(C f μS/kS − λ2
1)

2πkS(λ
2
1 − λ2

2)

×
⎛
⎝−qS,PT

∑
Portal tracts,i

K0
(
λ2rPT,i

)

+ qS,CV

∑
Central veins, j

K0
(
λ2rCV, j

)
⎞
⎠ , (33)

pI = (C f μS/kS − λ2
1)(C f μS/kS − λ2

2)

2πC f (λ
2
1 − λ2

2)

×
⎛
⎝qS,PT

∑
Portal tracts,i

(
K0

(
λ1rPT,i

)

− K0
(
λ2rPT,i

))+qS,CV

∑
Central veins, j

(−K0
(
λ1rCV, j

)

+ K0
(
λ2rCV, j

)))
. (34)

We note that, by symmetry, these solutions automatically
satisfy the conditions on the boundaries between lobules. The
solution is calculated using Matlab and is shown in Fig. 14.

The analytical solution has the advantage with respect to
the numerical one presented in the main part of the paper that
it allows us to resolve better the details of the pressure near
portal tracts and central veins, which is where changes are
more significant.

6 Appendix B: Estimation of model parameters
from experiments

6.1 Surface area of the liver

Negrini et al. (1990) measured the surface area of five rabbit
livers and found them to be 240 ± 13cm2. We use the data
from Boxenbaum (1980) to scale this up to the human: Typ-
ical body masses for rabbit and human are 2.88 and 62.8 kg,
while liver masses as a fraction of body mass are 4.78 and
2.42 %, respectively. Estimating that areas scale as the two-
thirds of the power of volumes gives a surface area of
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Fig. 14 Analytic solution showing contours of a pS , b pI in mmHg;
the contours are spaced by a 0.2 mmHg, b 0.05 mmHg. c Pressures on
Cuts 1 and 2 (shown in Fig. 3). The plots were produced with a lattice
of about 3×106 lobules, and this figure may be compared directly with
those shown in Figs. 3 and 4
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Aliv =
(

0.0242 × 62.8

0.0478 × 2.88

)2/3

240 = 1190 cm2. (35)

6.2 Interstitial permeability

We were unable to find experimental data on the value of the
model parameter kI , so here we develop a model to estimate
its value. Interstitial fluid is contained in the space of Disse
and also in the gaps between cells of the liver. The space of
Disse surrounds the sinusoids and contains the vast majority
of the interstitial fluid and also, due to its relatively large
width, offers much less resistance to fluid flow than the gaps
between cells. Thus, we assume that the permeability of the
interstitial space as a whole is dominated by the permeability
of the network of vessels comprising the space of Disse.
We use a simplified model of the geometry of the space of
Disse and the Kozeny–Carman relationship to estimate the
permeability. This relationship states that the permeability
equals φ3/(cS2), where φ is porosity, S is the specific surface,
defined as wet surface area per unit total volume, and c is the
Kozeny constant.

We treat the sinusoids as cylinders of diameter Dsin =
10 µm (Burt et al. 2006) surrounded by an annular region
of width DSD = 0.5 µm (estimated from a diagram in Burt
et al. (2006)) representing the space of Disse. Assuming that
the Kozeny constants of the sinusoids and interstitium are
equal gives the relationship:

kI =
(

SS

SI

)2 (
φI

φS

)3

kS, (36)

where φS and φI are the porosities of the sinusoids and inter-
stitium, respectively, and SS and SI are the corresponding
specific surfaces. The ratio of porosities is estimated as the
ratio of cross-sectional areas, that is,

φI

φS
≈ (π Dsin DSD)

(π D2
sin/4)

= 4DSD

Dsin
.

The wet surface area of the space of Disse is approximately
twice that of the sinusoid, meaning that SI /SS ≈ 2. Hence,

kI ≈ 1

4

(
4DSD

Dsin

)3

kS = 16D3
SD

D3
sin

kS = 0.002kS . (37)

6.3 Hepatic filtration

Greenway et al. (1969) performed experiments on the liv-
ers of anesthetized cats in which they controlled the hepatic
venous pressure and measured arterial and portal pressure,
liver volume, and blood flow through the liver in order to
determine the filtration coefficient, which is the volumetric
flow from the sinusoids to the interstitium per unit mechan-
ical pressure difference between the sinusoids and the inter-
stitium and per unit liver mass. They found that the flow rate

was F = 0.30 ± 0.03 ml/min per mmHg pressure differ-
ence between sinusoids and interstitium per 100 g of liver
tissue. In our model, we define the hepatic filtration coeffi-
cient, C f , as the volumetric rate of blood flow from sinusoids
to interstitium per unit pressure drop between sinusoids and
interstitium per unit volume of tissue. This is given by

C f = ρt F = 1060 ×
(

0.30 × 1

106 × 60
× 10

)

= 5.3 × 10−5/(mmHg s), (38)

where ρt = 1,060 kg/m3 is the density of liver tissue (Kotilu-
oto and Auterinen 2004).

6.4 Conductance of the lymphatic ducts

Elk et al. (1988) performed experiments on anesthetized
dogs weighing 20–30 kg to determine the flow rate into
the lymphatic vessels as a function of interstitial pres-
sure. They found that the volumetric flux of lymph leav-
ing the liver equaled max(pI − p0, 0)/Rl , where Rl =
0.056 cmH2O min/μl = 0.056 × (10/13.6) × (60 × 109) =
2.5 × 109 mmHg s/m3 is the resistance of the ducts. Boxen-
baum (1980) gives the typical mass of the dog liver as 2.91 %
of body weight, and, taking the typical mass of the dogs in
the experiment as 25 kg, this gives the volume flux per unit
volume of liver tissue as Cl max(pI − p0, 0), where

Cl = 1

Rl

ρt

0.0291 × 25
= 1

2.5 × 109

1060

0.0291 × 25

= 5.9 × 10−7/(mmHg s), (39)

where ρt = 1,060 kg/m3 is the density of liver tissue (Kotilu-
oto and Auterinen 2004).

6.5 Fraction of blood that is taken up by the lymphatic
vessels

Laine et al. (1979) measured the typical outflow of lymph
via the lymphatic vessels (not the surface) from the livers of
anesthetized dogs, finding it to be 3.5 ± 1.19 ml/h. We scale
this up to the typical flow rate for humans by multiplying by
the ratio of liver mass of humans to that of dogs. The weight
of the animals was recorded as at least 17 kg (here we take
it as 17 kg), 62.8 kg is used as a typical human body mass,
and the liver masses are 2.91 and 2.42 % of the body masses
for dogs and humans, respectively (Boxenbaum 1980). Thus,
the flux of lymph uptake from a human liver is estimated as

QL = 3.5 × 62.8 × 0.0242

17 × 0.0291
= 10.75 ml/h

= 3.0 × 10−9 m3/s. (40)
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The flux of blood through the liver is 1,717 ml/min (Wynne
et al. 1989 see also Table 1), and thus, we estimate that under
normal physiological conditions,

γ = QL

Qblood
= 1.0 × 10−4. (41)
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