1,191 research outputs found

    Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy

    Get PDF
    We have developed a method for imaging the temperature-frequency dependence of the dynamics of nanostructured polymer films with spatial resolution. This method provides images with dielectric compositional contrast well decoupled from topography. Using frequency-modulation electrostatic-force-microscopy, we probe the local frequency-dependent (0.1–100 Hz) dielectric response through measurement of the amplitude and phase of the force gradient in response to an oscillating applied electric field. When the phase is imaged at fixed frequency, it reveals the spatial variation in dielectric losses, i.e., the spatial variation in molecular/dipolar dynamics, with 40 nm lateral resolution. This is demonstrated by using as a model system; a phase separated polystyrene/polyvinyl-acetate (PVAc) blend. We show that nanoscale dynamic domains of PVAc are clearly identifiable in phase images as those which light-up in a band of temperature, reflecting the variations in the molecular/dipolar dynamics approaching the glass transition temperature of PVAc

    Palaeoecological study of a Weichselian wetland site in the Netherlands suggests a link with Dansgaard-Oeschger climate oscillation

    Get PDF
    Botanical microfossils, macroremains and oribatid mites of a Weichselian interstadial deposit in the central Netherlands point to a temporary, sub-arctic wetland in a treeless landscape. Radiocarbon dates and OSL dates show an age between ca. 54.6 and 46.6 ka cal BP. The vegetation succession, starting as a peat-forming wetland that developed into a lake, might well be linked with a Dansgaard-Oeschger climatic cycle. We suggest that during the rapid warming at the start of a D-O cycle, relatively low areas in the landscape became wetlands where peat was formed. During the more gradual temperature decline that followed, evaporation diminished; the wetlands became inundated and lake sediments were formed. During subsequent sub-arctic conditions the interstadial deposits were covered with wind-blown sand. Apart from changes in effective precipitation also the climate-related presence and absence of permafrost conditions may have played a role in the formation of the observed sedimentological sequence from sand to peat, through lacustrine sediment, with coversand on top. The Wageningen sequence may correspond with D-O event 12, 13 or 14. Some hitherto not recorded microfossils were described and illustrated

    The effects of demineralisation and sampling point variability on the measurement of glutamine deamidation in type I collagen extracted from bone

    Get PDF
    The level of glutamine (Gln) deamidation in bone collagen provides information on the diagenetic history of bone but, in order to accurately assess the extent of Gln deamidation, it is important to minimise the conditions that may induce deamidation during the sample preparation. Here we report the results of a preliminary investigation of the variability in glutamine deamidation levels in an archaeological bone due to: a) sampling location within a bone; b) localised diagenesis; and c) sample preparation methods. We then investigate the effects of pre-treatment on three bone samples: one modern, one Medieval and one Pleistocene. The treatment of bone with acidic solutions was found to both induce deamidation and break down the collagen fibril structure. This is particularly evident in the Pleistocene material (∼80,000 years BP) considered in this study. We show that ethylenediaminetetraacetic acid (EDTA), when used as an alternative to hydrochloric acid (HCl) demineralisation, induces minimal levels of deamidation and maintains the collagen fibril structure. Areas of bone exhibiting localised degradation are shown to be correlated with an increase in the levels of Gln deamidation. This indicates that the extent of Gln deamidation could provide a marker for diagenesis but that sampling is important, and that, whenever possible, subsamples should be taken from areas of the bone that are visually representative of the bone as a whole. Although validation of our observations will require analysis of a larger sample set, deamidation measurements could be a valuable screening tool to evaluate the suitability of bone for further destructive collagen analyses such as isotopic or DNA analysis, as well as assessing the overall preservation of bone material at a site. The measure of bone preservation may be useful to help conservators identify bones that may require special long-term storage conditions

    Radiocarbon dates from the Netherlands and Doggerland as a proxy for vegetation and faunal biomass between 55 and 5 ka cal bp

    Get PDF
    Three hundred forty-one radiocarbon dates from the Groningen radiocarbon database are compiled in this study. They show for the first time that organic sediment samples from the eastern Netherlands and mammal bones from Doggerland reflect shifts in the presence and the density of vegetation (food for herbivores) and mammal biomass during the last ice age (Weichselian Stage, ~119–14.7 ka cal bp). Comparison with oxygen isotope curves of Greenland ice cores and geomorphological data shows that cold climate, in particular during the younger part of the Weichselian Middle Pleniglacial and during the Late Pleniglacial, and related scarcity or even absence of vegetation, were limiting factors for the carrying capacity of the landscape and thus for the population density of large herbivores during the period covered by 14C dating (last ca. 55 000 years). A ‘fossil gap’ during the Late Pleniglacial lasted ca. 13 000 years from ca. 28 to 15 ka cal bp. Previous research from the nearby Eifel region in Germany shows that environmental conditions were less extreme (‘refugium conditions’) than in the Netherlands, taking into account the continuous presence of spores of coprophilous fungi in the Eifel, indicating uninterrupted food supply for herbivores.</p

    The role of solar forcing upon climate change

    Get PDF
    Evidence for millennial-scale climate changes during the last 60,000 years has been found in Greenland ice cores and North Atlantic ocean cores. Until now, the cause of these climate changes remained a matter of debate. We argue that variations in solar activity may have played a significant role in forcing these climate changes. We review the coincidence of variations in cosmogenic isotopes (14C and 10Be) with climate changes during the Holocene and the upper part of the last Glacial, and present two possible mechanisms (involving the role of solar UV variations and solar wind/cosmic rays) that may explain how small variations in solar activity are amplified to cause significant climate changes. Accepting the idea of solar forcing of Holocene and Glacial climatic shifts has major implications for our view of present and future climate. It implies that the climate system is far more sensitive to small variations in solar activity than generally believed.

    Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homer is a postsynaptic scaffold protein that links various synaptic signaling proteins, including the type I metabotropic glutamate receptor subunits 1α and 5, the inositol 1,4,5-trisphosphate receptor, Shank and Cdc42 small GTPase. Overexpression of Homer induces changes in dendritic spine morphology in cultured hippocampal neurons. However, the molecular basis underpinning Homer-mediated spine morphogenesis remains unclear. In this study, we aimed to elucidate the structural and functional properties of the interaction between Cupidin/Homer2 and two actin-cytoskeletal regulators, Cdc42 small GTPase and Drebrin.</p> <p>Results</p> <p>Cupidin/Homer2 interacted with activated Cdc42 small GTPase via the Cdc42-binding domain that resides around amino acid residues 191–283, within the C-terminal coiled-coil domain. We generated a Cupidin deletion mutant lacking amino acids 191–230 (CPDΔ191–230), which showed decrease Cdc42-binding ability but maintained self-multimerization ability. Cupidin suppressed Cdc42-induced filopodia-like protrusion formation in HeLa cells, whereas CPDΔ191–230 failed to do so. In cultured hippocampal neurons, Cupidin was targeted to dendritic spines, whereas CPDΔ191–230 was distributed in dendritic shafts as well as spines. Overexpression of CPDΔ191–230 decreased the number of synapses and reduced the amplitudes of miniature excitatory postsynaptic currents in hippocampal neurons. Cupidin interacted with a dendritic spine F-actin-binding protein, Drebrin, which possesses two Homer ligand motifs, via the N-terminal EVH-1 domain. CPDΔ191–230 overexpression decreased Drebrin clustering in the dendritic spines of hippocampal neurons.</p> <p>Conclusion</p> <p>These results indicate that Cupidin/Homer2 interacts with the dendritic spine actin regulators Cdc42 and Drebrin via its C-terminal and N-terminal domains, respectively, and that it may be involved in spine morphology and synaptic properties.</p
    corecore