1,582 research outputs found
Formal concept analysis and structures underlying quantum logics
A Hilbert space induces a formal context, the Hilbert formal context , whose associated concept lattice is isomorphic to the lattice of closed subspaces of . This set of closed subspaces, denoted , is important in the development of quantum logic and, as an algebraic structure, corresponds to a so-called ``propositional system'', that is, a complete, atomistic, orthomodular lattice which satisfies the covering law.
In this paper, we continue with our study of the Chu construction by introducing the Chu correspondences between Hilbert contexts, and showing that the category of Propositional Systems, PropSys, is equivalent to the category of of Chu correspondences between Hilbert contextsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
An Intrisic Topology for Orthomodular Lattices
We present a general way to define a topology on orthomodular lattices. We
show that in the case of a Hilbert lattice, this topology is equivalent to that
induced by the metrics of the corresponding Hilbert space. Moreover, we show
that in the case of a boolean algebra, the obtained topology is the discrete
one. Thus, our construction provides a general tool for studying orthomodular
lattices but also a way to distinguish classical and quantum logics.Comment: Under submission to the International Journal of Theoretical Physic
Probabilistic theories with purification
We investigate general probabilistic theories in which every mixed state has
a purification, unique up to reversible channels on the purifying system. We
show that the purification principle is equivalent to the existence of a
reversible realization of every physical process, namely that every physical
process can be regarded as arising from a reversible interaction of the system
with an environment, which is eventually discarded. From the purification
principle we also construct an isomorphism between transformations and
bipartite states that possesses all structural properties of the
Choi-Jamiolkowski isomorphism in quantum mechanics. Such an isomorphism allows
one to prove most of the basic features of quantum mechanics, like e.g.
existence of pure bipartite states giving perfect correlations in independent
experiments, no information without disturbance, no joint discrimination of all
pure states, no cloning, teleportation, no programming, no bit commitment,
complementarity between correctable channels and deletion channels,
characterization of entanglement-breaking channels as measure-and-prepare
channels, and others, without resorting to the mathematical framework of
Hilbert spaces.Comment: Differing from the journal version, this version includes a table of
contents and makes extensive use of boldface type to highlight the contents
of the main theorems. It includes a self-contained introduction to the
framework of general probabilistic theories and a discussion about the role
of causality and local discriminabilit
Simultaneous radio-interferometric and high-energy TeV observations of the gamma-ray blazar Mkn 421
The TeV-emitting BL Lac object Mkn 421 was observed with very long baseline
interferometry (VLBI) at three closely-spaced epochs one-month apart in
March-April 1998. The source was also monitored at very-high gamma-ray energies
(TeV measurements) during the same period in an attempt to search for
correlations between TeV variability and the evolution of the radio morphology
on parsec scales. While the VLBI maps show no temporal changes in the Mkn 421
VLBI jet, there is strong evidence of complex variability in both the total and
polarized fluxes of the VLBI core of Mkn 421 and in its spectrum over the
two-month span of our data. The high-energy measurements indicate that the
overall TeV activity of the source was rising during this period, with a
gamma-ray flare detected just three days prior to our second VLBI observing
run. Although no firm correlation can be established, our data suggest that the
two phenomena (TeV activity and VLBI core variability) are connected, with the
VLBI core at 22 GHz being the self-absorbed radio counterpart of synchrotron
self-Compton (SSC) emission at high energies. Based on the size of the VLBI
core, we could derive an upper limit of 0.1 pc (3 x 10**17 cm) for the
projected size of the SSC zone. This determination is the first model-free
estimate of the size of the gamma-ray emitting region in a blazar.Comment: 12 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
Foundations of a spacetime path formalism for relativistic quantum mechanics
Quantum field theory is the traditional solution to the problems inherent in
melding quantum mechanics with special relativity. However, it has also long
been known that an alternative first-quantized formulation can be given for
relativistic quantum mechanics, based on the parametrized paths of particles in
spacetime. Because time is treated similarly to the three space coordinates,
rather than as an evolution parameter, such a spacetime approach has proved
particularly useful in the study of quantum gravity and cosmology. This paper
shows how a spacetime path formalism can be considered to arise naturally from
the fundamental principles of the Born probability rule, superposition, and
Poincar\'e invariance. The resulting formalism can be seen as a foundation for
a number of previous parametrized approaches in the literature, relating, in
particular, "off-shell" theories to traditional on-shell quantum field theory.
It reproduces the results of perturbative quantum field theory for free and
interacting particles, but provides intriguing possibilities for a natural
program for regularization and renormalization. Further, an important
consequence of the formalism is that a clear probabilistic interpretation can
be maintained throughout, with a natural reduction to non-relativistic quantum
mechanics.Comment: RevTex 4, 42 pages; V6 is as accepted for publication in the Journal
of Mathematical Physics, updated in response to referee comments; V7 includes
final editorial correction
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
PETAAL : Protection Environnement et Technologie des Arbres d’Alignements
Programme d’études coordonné par le centre technique Plante & Cité
Avec le soutien du Fond Unique Interministériel et du Conseil Régional des Pays de la Loir
Time-of-arrival in quantum mechanics
We study the problem of computing the probability for the time-of-arrival of
a quantum particle at a given spatial position. We consider a solution to this
problem based on the spectral decomposition of the particle's (Heisenberg)
state into the eigenstates of a suitable operator, which we denote as the
``time-of-arrival'' operator. We discuss the general properties of this
operator. We construct the operator explicitly in the simple case of a free
nonrelativistic particle, and compare the probabilities it yields with the ones
estimated indirectly in terms of the flux of the Schr\"odinger current. We
derive a well defined uncertainty relation between time-of-arrival and energy;
this result shows that the well known arguments against the existence of such a
relation can be circumvented. Finally, we define a ``time-representation'' of
the quantum mechanics of a free particle, in which the time-of-arrival is
diagonal. Our results suggest that, contrary to what is commonly assumed,
quantum mechanics exhibits a hidden equivalence between independent (time) and
dependent (position) variables, analogous to the one revealed by the
parametrized formalism in classical mechanics.Comment: Latex/Revtex, 20 pages. 2 figs included using epsf. Submitted to
Phys. Rev.
Generalised quantum weakest preconditions
Generalisation of the quantum weakest precondition result of D'Hondt and
Panangaden is presented. In particular the most general notion of quantum
predicate as positive operator valued measure (POVM) is introduced. The
previously known quantum weakest precondition result has been extended to cover
the case of POVM playing the role of a quantum predicate. Additionally, our
result is valid in infinite dimension case and also holds for a quantum
programs defined as a positive but not necessary completely positive
transformations of a quantum states.Comment: 7 pages, no figures, added references, changed conten
- …
