2,113 research outputs found

    An Economic Analysis of Public Interventions for Amelioration of Irrigation-Induced Soil Degradation

    Get PDF
    The study has reported the impact of public interventions for amelioration of soil degradation through subsurface drainage technology in the Tungabhadra Project area in Karnataka. The primary data, obtained from 105 farmers of TBP area, have been analysed using budgeting, discounted cash flow measures and gini ratio. The provision of subsurface drainage through public interventions, has increased the productivity of land appreciably (166 per cent) and has provided a source of regular income (Rs 13,636/ha from paddy) to resource-poor households. The technology has been found to be cost effective, socially acceptable and economically feasible. The equity analysis has indicated reduction in inequalities in income distribution during the post-drainage period. The study has suggested that the government should aim at encouraging and educating the affected farmers in adopting subsurface drainage technology on a large-scale.Land Economics/Use, Resource /Energy Economics and Policy,

    Equity Issues Relating to Irrigation-induced Soil Degradation under Left Bank Canal of Tungabhadra Project Area, Karnataka

    Get PDF
    The equity issues concerning soil degradation and soil reclamation have been analysed for Tungabhadra Project Area of the Karnataka state. The study is based on primary data obtained from 325 respondent farmers. The data gathered by survey method have been analysed using conventional and simple tabular method of analysis, Gini ratio, and Lorenz curve. The study has revealed that the small and marginal farmers are worst affected by soil degradation. The large farmers have also experienced the brunt of soil degradation but the effect has been marginal since they have alternative sources of livelihood. The study has further indicated that the extent of inequity is higher on degraded than normal soils. However, this can be reduced to a great extent by launching land reclamation programmes. Therefore, the study has suggested that the government should initiate land reclamation programmes on a large scale on long-term basis so that the fruits of land reclamation technologies could reach the vulnerable sections of the society.Agricultural and Food Policy,

    Estimation of Severity of Speech Disability through Speech Envelope

    Full text link
    In this paper, envelope detection of speech is discussed to distinguish the pathological cases of speech disabled children. The speech signal samples of children of age between five to eight years are considered for the present study. These speech signals are digitized and are used to determine the speech envelope. The envelope is subjected to ratio mean analysis to estimate the disability. This analysis is conducted on ten speech signal samples which are related to both place of articulation and manner of articulation. Overall speech disability of a pathological subject is estimated based on the results of above analysis.Comment: 8 pages,4 Figures,Signal & Image Processing Journal AIRC

    Bulk and surface modification of TiO2 with sulfur and silver: Synergetic effects of dual surface modification in the enhancement of photocatalytic activity

    Get PDF
    Sulfur ion (S6+) was incorporated into the TiO2 lattice (Ti0.85S0.15O2) using sulfur powder as precursor. 0.05​% of silver was deposited on the surface of Ti0.85S0.15O2 by photoinduced deposition method. The photocatalytic reactivity of TiO2, Ag-​TiO2, Ti0.85S0.15O2 and Ag-​Ti0.85S0.15O2 photocatalysts were probed for the degrdn. of a model compd. congo red (CR) dye under UV​/solar light illumination. FTIR and XPS results suggested that the dopant sulfur ion (S6+) was incorporated into the TiO2 crystal lattice at Ti4+ lattice site and the sulfur ions on the surface were modified as SO42-​ active sites serving as electron withdrawing group. TEM and XPS anal. of Ag-​Ti0.85S0.15O2 has confirmed the deposition of silver in the Ag0 state. Ag-​Ti0.85S0.15O2 shows better photoactivty under solar light irradn. when compared to all the other photocatalysts. The enhanced photocatalytic activity of this catalyst is attributed to the synergetic effects of the incorporated dopant electronic energy level with the dual surface modifications of the type SO42-​ active centers and Schottky junctions created by metallic Ag0. Further the deposited Ag particles plays a dual role one as a sensitizer due to the Surface Plasmon Resonance (SPR) effect and also acts as an electron trapper under solar light illumination reducing the recombination of photogenerated charge carriers

    Silver Metalized Mixed Phase Manganese-Doped Titania: Variation of Electric Field and Band Bending within the Space Charge Region with Respect to the Silver Content

    Get PDF
    Silver was deposited on manganese-doped titanates (Mn–TiO2) by photoinduced deposition method. The catalyst shows enhanced photocatalytic activity due to the synergistic effect of bicrystalline framework of anatase and rutile structures with high intimate contact due to the similarity in their crystallite sizes. The deposited metal nanostructures help in the formation of resonant surface plasmons in response to a photon flux, localizing the electromagnetic energy close to their surfaces. Better charge separation is achieved near the semiconductor surface due to the localized field. Silver deposition was varied from 0.1 to 1.5% on the surface of Mn–TiO2. The mechanism of interfacial electron transfer at heterojunctions in mixed phase induced by the plasmonic catalysis is explained. The extent of band bending, the variation of potential field in the space charge region with respect to the size of the deposited Ag metal particles is discussed. The photocatalytic activity of silver deposited Mn–TiO2 was evaluated by taking resorcinol (Rs) as the model compound along with oxidants such as hydrogen peroxide (H2O2) and ammonium per sulfate (APS) under UV/solar light illumination. The electronic level of the dopant, high intimate contact between the anatase and rutile phases along with efficient electron trapping by silver particles, plays a significant role in the photocatalytic process

    Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes

    Get PDF
    An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis

    Secure and Efficient Data Transmission for Cluster Based Wireless Sensor Network Using Cryptography

    Full text link
    Wireless Sensor Networks (WSN) plays vital role in research field. Due to its rapidly increasing application in monitoring various kinds of environment by sensing physical phenomenon. Clustering is an efficient and effective method to enhance performance of the WSNs system. In this project work, we study a secure transmission of data for cluster-based WSNs (CWSNs), where the clusters are formed dynamically and randomly. We propose two Secure and Efficient data Transmission (SET) protocols for CWSNs, called SET-IBS and SET-IBOOS, by using the Identity-Based digital Signature (IBS) scheme and the Identity-Based Online/Offline digital Signature (IBOOS) scheme, respectively. The cluster routing protocol LEACH (Low-Energy Adaptive Clustering Hierarchy) is considered and improved. In SET-IBS, security relies on the hardness of the Diffie-Hellman problem in the pairing area. SET-IBOOS additionally decreases the computational operating cost for protocol security, which is critical for WSNs, while its defense depends on the stability of the problem of discrete logarithm. We propose a clustering routing protocol named Enhanced LEACH, which extends LEACH protocol by balancing the energy consumption in the network. The simulation results show that Enhanced LEACH outperforms LEACH in terms of network system lifetime and reduce the energy consumption

    Effect of extraction methods on physicochemical, nutritional, antinutritional, antioxidant and antimicrobial activity of Moringa (Moringa oleifera Lam.) seed kernel oil

    Get PDF
    The effect of three different extraction methods, namely supercritical CO2, soxhlet and solvent methods on the yield, efficiency, physico-chemical properties, nutritional, anti-nutritional composition, antimicrobial and antioxidant activities of moringa (Moringa oleifera Lam.) seed kernel oil was investigated in this study. Oil extraction for SC-CO2 were 37.76 g/100g and 98.43%, observed to be higher than those of soxhlet extraction (29.12 g/100g and 76.29%), and significantly lower than solvent extraction (22.12 g/100g and 57.99%). The physico-chemical composition of the oils showed considerable variation among the extraction methods. The SC-CO2 extracted oil was found to be of superior quality, showing negligible thermal degradation and exhibited significantly (p<0.01) higher nutritional and antioxidant activity and lower anti-nutritional composition than the soxhlet and solvent extracted oils. Oils produced by SC-CO2 and soxhlet extraction methods had antimicrobial activities higher than solvent extracted oil. SCCO2 extracted oil was found to have maximum number of bioactive compounds (14 compounds) followed by solvent (8 compounds) and soxhlet (4 compounds) extracted oil. The results of the study demonstrated that SC-CO2 would be a promising process for the extraction of moringa seed kernel oil of premium quality

    A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing

    Get PDF
    Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism

    A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing

    Get PDF
    Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism
    corecore