217 research outputs found

    NEA TDBIV project : preparation of a state-of-the-art report on thermodynamic data for cement

    No full text
    The program of work of the fourth phase of the OECD NEA Thermochemical Database Project (TDB-IV) contemplates a line of activity on the preparation of a state of the art report on cements. The present work aims at presenting the project, its aims and its limits

    Determination of the degree of reaction of fly ash in blended cement pastes

    Get PDF
    This paper gives a review over methods to determine the degree of reaction for supplementary cementitious materials (SCMs) with focus on Portland cement - fly ash blends only and summarizes and highlights the most important findings which are detailed in a parallel paper published in Materials and Structures. Determination of the extent of the reaction of SCMs in mixtures is complicated for several reasons: (1) the physical presence of SCMs affects the rate and extent of the reaction of the ground clinker component – the so called “filler effect”; (2) SCMs are usually amorphous with complex and varied mineralogy which make them difficult to quantify by many classical techniques such as X-ray diffraction; (3) the rate of reaction of SCMs in a cement blend may be quite different from its rate of reaction in systems containing simply alkali or lime. From this review it is clear that measuring the degree of reaction of SCMs remains challenging. Nevertheless progress has been made in recent years to offer alternatives to the traditional selective dissolution methods. Unfortunately some of these – image analysis and EDS mapping in the scanning electron microscope, and NMR - depend on access to expensive equipment and are time consuming. With regard to fly ashes, NMR seems to be reliable but limited to fly ash with low iron content. New methods with quantitative EDS mapping to segment fly ash particles from the hydrated matrix and to follow the reaction of glass groups of disparate composition separately look very promising, but time consuming. Sources with a high proportion of fine particles will have higher errors due to lower limit of resolution (1-2 ÎŒm). Whereas for SCMs which react relatively fast (e.g. slag, calcined clay) the methods based on calorimetry and chemical shrinkage seem promising on a comparative basis, the very low reaction degree of fly ashes before 28 days means that the calorimetry method is not practical. There is a lack of data to assess the usefulness of long term chemical shrinkage measurements. The possibility to quantify the amorphous phase by XRD is promising as this is a widely available and rapid technique which can at the same time give a wealth of additional information on the phases formed. However, the different reaction rates of different glasses in compositionally heterogeneous fly ashes will need to be accounted for and may strongly reduce the accuracy of the profile decomposition method. This paper is the work of working group 2 of the RILEM TC 238-SCM “Hydration and microstructure of concrete with supplementary cementitious materials”

    Retention and diffusion of radioactive and toxic species on cementitious systems: Main outcome of the CEBAMA project

    Get PDF
    Cement-based materials are key components in radioactive waste repository barrier systems. To improve the available knowledge base, the European CEBAMA (Cement-based materials) project aimed to provide insight on general processes and phenomena that can be easily transferred to different applications. A bottom up approach was used to study radionuclide retention by cementitious materials, encompassing both individual cement mineral phases and hardened cement pastes. Solubility experiments were conducted with Be, Mo and Se under high pH conditions to provide realistic solubility limits and radionuclide speciation schemes as a prerequisite for meaningful adsorption studies. A number of retention mechanisms were addressed including adsorption, solid solution formation and precipitation of radionuclides within new solid phases formed during cement hydration and evolution. Sorption/desorption experiments were carried out on several anionic radionuclides and/or toxic elements which have received less attention to date, namely: Be, Mo, Tc, I, Se, Cl, Ra and 14C. Solid solution formation between radionuclides in a range of oxidation states (Se, I and Mo) with the main aqueous components (OH−, SO4 −2, Cl−) of cementitious systems on AFm phases were also investigated

    Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1

    Get PDF
    A primary aim of RILEM TC 267-TRM: “Tests for Reactivity of Supplementary Cementitious Materials (SCMs)” is to compare and evaluate the performance of conventional and novel SCM reactivity test methods across a wide range of SCMs. To this purpose, a round robin campaign was organized to investigate 10 different tests for reactivity and 11 SCMs covering the main classes of materials in use, such as granulated blast furnace slag, fly ash, natural pozzolan and calcined clays. The methods were evaluated based on the correlation to the 28 days relative compressive strength of standard mortar bars containing 30% of SCM as cement replacement and the interlaboratory reproducibility of the test results. It was found that only a few test methods showed acceptable correlation to the 28 days relative strength over the whole range of SCMs. The methods that showed the best reproducibility and gave good correlations used the R3 model system of the SCM and Ca(OH)2, supplemented with alkali sulfate/carbonate. The use of this simplified model system isolates the reaction of the SCM and the reactivity can be easily quantified from the heat release or bound water content. Later age (90 days) strength results also correlated well with the results of the IS 1727 (Indian standard) reactivity test, an accelerated strength test using an SCM/Ca(OH)2-based model system. The current standardized tests did not show acceptable correlations across all SCMs, although they performed better when latently hydraulic materials (blast furnace slag) were excluded. However, the Frattini test, Chapelle and modified Chapelle test showed poor interlaboratory reproducibility, demonstrating experimental difficulties. The TC 267-TRM will pursue the development of test protocols based on the R3 model systems. Acceleration and improvement of the reproducibility of the IS 1727 test will be attempted as well

    Influence of slag composition on the stability of steel in alkali-activated cementitious materials

    Get PDF
    Among the minor elements found in metallurgical slags, sulfur and manganese can potentially influence the corrosion process of steel embedded in alkali-activated slag cements, as both are redox-sensitive. Particularly, it is possible that these could significantly influence the corrosion process of the steel. Two types of alkali-activated slag mortars were prepared in this study: 100% blast furnace slag and a modified slag blend (90% blast furnace slag? 10% silicomanganese slag), both activated with sodium silicate. These mortars were designed with the aim of determining the influence of varying the redox potential on the stability of steel passivation under exposure to alkaline and alkaline chloride-rich solutions. Both types of mortars presented highly negative corrosion potentials and high current density values in the presence of chloride. The steel bars extracted from mortar samples after exposure do not show evident pits or corrosion product layers, indicating that the presence of sulfides reduces the redox potential of the pore solution of slag mortars, but enables the steel to remain in an apparently passive state. The presence of a high amount of MnO in the slag does not significantly affect the corrosion process of steel under the conditions tested. Mass transport through the mortar to the metal is impeded with increasing exposure time; this is associated with refinement of the pore network as the slag continued to react while the samples were immersed
    • 

    corecore