3,261 research outputs found
A Proper Motion Study of the Haro 6-10 Outflow: Evidence for a Subarcsecond Binary
We present single-dish and VLBI observations of an outburst of water maser
emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus
molecular cloud and contains a visible T Tauri star with an infrared companion
1.3" north. Using the Very Long Baseline Array, we obtained five observations
spanning 3 months and derived absolute positions for 20 distinct maser spots.
Three of the masers can be traced over 3 or more epochs, enabling us to extract
absolute proper motions and tangential velocities. We deduce that the masers
represent one side of a bipolar outflow that lies nearly in the plane of the
sky with an opening angle of ~45\deg. They are located within 50 mas of the
southern component of the binary, the visible T Tauri star Haro 6-10S. The mean
position angle on the sky of the maser proper motions (~220\deg) suggests they
are related to the previously observed giant Herbig-Haro (HH) flow which
includes HH410, HH411, HH412, and HH184A-E. A previously observed HH jet and
extended radio continuum emission (mean position angle of ~190\deg) must also
originate in the vicinity of Haro6-10S and represent a second, distinct outflow
in this region. We propose that a yet unobserved companion within 150 mas of
Haro6-10S is responsible for the giant HH/maser outflow while the visible star
is associated with the HH jet. Despite the presence of H_2 emission in the
spectrum of the northern component of the binary, Haro6-10N, none of
outflows/jets can be tied directly to this young stellar object
Law Libraries and Laboratories: The Legacies of Langdell and His Metaphor
Law Librarians and others have often referred to Harvard Law School Dean C.C. Langdell’s statements that the law library is the lawyer’s laboratory. Professor Danner examines the context of what Langdell through his other writings, the educational environment at Harvard in the late nineteenth century, and the changing perceptions of university libraries generally. He then considers how the “laboratory metaphor” has been applied by librarians and legal scholars during the twentieth century and into the twenty-first. The article closes with thoughts on Langdell’s legacy for law librarians and the usefulness of the laboratory metaphor
Volatile Composition and Outgassing in C/2018 Y1 (IWAMOTO): Extending Detection Limits for High-Resolution IR Cometary Spectroscopy at the NASA-IRTF
We used iSHELL, the powerful high-resolution ( /~ 40,000) cross-dispersed IR spectrograph at the NASA-IRTF to measure the native ice composition and outgassing of moderately bright, long-period comet C/2018 Y1 (Iwamoto) (hereafter Y1) within weeks of its discovery. We measured production rates for H2O, and production rates and abundance ratios relative to H2O for eight trace molecules, including the most complete measure of cometary CH4 achieved to date. Compared with mean abundances measured among comets, our study revealed enriched CH3OH and C2H6 yet depleted CO and C2H2, perhaps indicating highly efficient H- atom addition on interstellar grains prior to their incorporation into the nucleus. The combined high spectral resolving power and broad spectral coverage of iSHELL allowed characterizing cometary composition using only three instrument settings, and its long-slit coverage allowed comparing the spatial distributions of molecular emissions and dust continuum
Temporal and Spatial Aspects of Gas Release During the 2010 Apparition of Comet 103P/Hartley-2
We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6,
CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet
103P/Hartley-2 using high dispersion infrared spectroscopy. We quantified the
long- and short-term behavior of volatile release over a three-month interval
that encompassed the comet's close approach to Earth, its perihelion passage,
and flyby of the comet by the Deep Impact spacecraft during the EPOXI mission.
We present production rates for individual species, their mixing ratios
relative to water, and their spatial distributions in the coma on multiple
dates. The production rates for water, ethane, HCN, and methanol vary in a
manner consistent with independent measures of nucleus rotation, but mixing
ratios for HCN, C2H6, & CH3OH are independent of rotational phase. Our results
demonstrate that the ensemble average composition of gas released from the
nucleus is well defined, and relatively constant over the three-month interval
(September 18 through December 17). If individual vents vary in composition,
enough diverse vents must be active simultaneously to approximate (in sum) the
bulk composition of the nucleus. The released primary volatiles exhibit diverse
spatial properties which favor the presence of separate polar and apolar ice
phases in the nucleus, establish dust and gas release from icy clumps (and
also, directly from the nucleus), and provide insights into the driver for the
cyanogen (CN) polar jet. The spatial distributions of C2H6 & HCN along the
near-polar jet (UT 19.5 October) and nearly orthogonal to it (UT 22.5 October)
are discussed relative to the origin of CN. The ortho-para ratio (OPR) of water
was 2.85 \pm 0.20; the lower bound (2.65) defines Tspin > 32 K. These values
are consistent with results returned from ISO in 1997.Comment: 18 pages, 3 figures, to be published in: Astrophysical Journal
Letter
PdBI sub-arcsecond study of the SiO microjet in HH212 - Origin and collimation of Class 0 jets
The bipolar HH 212 outflow has been mapped in SiO using the extended
configuration of the Plateau de Bure Interferometer (PdBI), revealing a highly
collimated SiO jet closely associated with the H2 jet component. We study at
unprecedented resolution (0.34" across the jet axis) the properties of the
innermost SiO ``microjet'' within 1000 AU of this young Class 0 source, to
compare it with atomic microjets from more evolved sources and to constrain its
origin. The SiO channel maps are used to investigate the microjet collimation
and velocity structure. A large velocity gradient analysis is applied to SiO
(2-1), (5-4) and (8-7) data from the PdBI and the Submillimeter Array to
constrain the SiO opacity and abundance. The HH212 Class 0 microjet shows
striking similarities in collimation and energetic budget with atomic microjets
from T Tauri sources. Furthermore, the SiO lines appear optically thick, unlike
what is generally assumed. We infer T(kin) ~ 50-500 K and an SiO/H2 abundance
greater than 4 10(-8)-6 10(-5) for n(H2) = 10(7)-10(5) cm(-3), i.e. 0.05-90% of
the elemental silicon. This similar jet width, regardless of the presence of a
dense envelope, definitely rules out jet collimation by external pressure, and
favors a common MHD self-collimation (and possibly acceleration) process at all
stages of star formation. We propose that the more abundant SiO in Class 0 jets
could mainly result from rapid (less than 25 yrs) molecular synthesis at high
jet densities
Transport Properties, Thermodynamic Properties, and Electronic Structure of SrRuO3
SrRuO is a metallic ferromagnet. Its electrical resistivity is reported
for temperatures up to 1000K; its Hall coefficient for temperatures up to 300K;
its specific heat for temperatures up to 230K. The energy bands have been
calculated by self-consistent spin-density functional theory, which finds a
ferromagnetic ordered moment of 1.45 per Ru atom. The measured
linear specific heat coefficient is 30mJ/mole, which exceeds the
theoretical value by a factor of 3.7. A transport mean free path at room
temperature of is found. The resistivity increases nearly
linearly with temperature to 1000K in spite of such a short mean free path that
resistivity saturation would be expected. The Hall coefficient is small and
positive above the Curie temperature, and exhibits both a low-field and a
high-field anomalous behavior below the Curie temperature.Comment: 6 pages (latex) and 6 figures (postscript, uuencoded.) This paper
will appear in Phys. Rev. B, Feb. 15, 199
CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483
CO isotopes are able to probe the different components in protostellar
clouds. These components, core, envelope and outflow have distinct physical
conditions and sometimes more than one component contributes to the observed
line profile. In this study we determine how CO isotope abundances are altered
by the physical conditions in the different components. We use a 3D molecular
line transport code to simulate the emission of four CO isotopomers, 12CO
J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483,
which contains a cold quiescent core, an infalling envelope and a clear
outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line
observations with the inclusion of freeze-out, a density profile and infall.
Our model profiles of 12CO and 13CO have a large linewidth due to a high
velocity jet. These profiles replicate the process of more abundant material
being susceptible to a jet. C18O and C17O do not display such a large linewidth
as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table
Re-Focusing - Building a Future for Entrepreneurial Education & Learning
The field of entrepreneurship has struggled with fundamental
questions concerning the subject’s nature and purpose. To whom and to
what means are educational and training agendas ultimately directed?
Such questions have become of central importance to policy makers,
practitioners and academics alike. There are suggestions that university
business schools should engage more critically with the lived experiences
of practising entrepreneurs through alternative pedagogical approaches
and methods, seeking to account for and highlighting the social, political
and moral aspects of entrepreneurial practice. In the UK, where funding in
higher education has become increasingly dependent on student fees,
there are renewed pressures to educate students for entrepreneurial
practice as opposed to educating them about the nature and effects of
entrepreneurship. Government and EU policies are calling on business
schools to develop and enhance entrepreneurial growth and skill sets, to
make their education and training programmes more proactive in
providing innovative educational practices which help and facilitate life
experiences and experiential learning. This paper makes the case for
critical frameworks to be applied so that complex social processes
become a source of learning for educators and entrepreneurs and so that
innovative pedagogical approaches can be developed in terms both of
context (curriculum design) and process (delivery methods)
Warm SiO gas in molecular bullets associated with protostellar outflows
In this paper we present the first SiO multiline analysis (from J=2-1 to
J=11-10) of the molecular bullets along the outflows of the Class 0 sources
L1448-mm and L1157-mm, obtained through observations with IRAM and JCMT. We
have computed the main physical parameters in each bullet and compared them
with other tracers of warm and dense gas and with models for the SiO excitation
in shocks. We find that the bullets close to L1448--mm, associated with high
velocity gas, have higher excitation conditions (n(H2) ~ 10^{6} cm^{-3}, T >
500 K) with respect to the L1157 bullets (n(H2) ~1-5 10^{5} cm^{-3}, T ~
100-300 K). In both the sources, there is a clear evidence of the presence of
velocity components having different excitation conditions, with the denser
and/or warmer gas associated with the gas at the higher speed. In L1448 the
bulk of the emission is due to the high-excitation and high velocity gas, while
in L1157 most of the emission comes from the low excitation gas at ambient
velocity. The observed velocity-averaged line ratios are well reproduced by
shocks with speeds v_s larger than ~ 30 km/s and densities ~ 10^{5} - 10^{6}
cm^{-3}. Plane-parallel shock models, however, fail to predict all the observed
line profiles and in particular the very similar profiles shown by both low and
high excitation lines. The overall observations support the idea that the L1157
clumps are shock interaction events older than the L1448 bullets close to the
driving source. In the latter objects, the velocity structure and the
variations of physical parameters with the velocity resemble very closely those
found in optical/IR jets near the protostar, suggesting that similar launching
and excitation mechanisms are also at the origin of collimated jets seen at
millimetre wavelengths.Comment: 11pages, 9 figures, A&A accepte
- …
