1,488 research outputs found

    Attractive internal wave patterns

    Full text link
    This paper gives background information for the fluid dynamics video on internal wave motion in a trapezoidal tank.Comment: 2 pg, movie at two resolutions _low(Low-resolution) and _hr(High-resolution

    A pattern matching technique for measuring sediment displacement levels

    Get PDF
    This paper describes a novel technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels. A sequence of different random patterns are projected onto a sediment layer and captured using a high-resolution camera, producing a set of reference images. The same patterns are used to obtain a corresponding sequence of deformed images after a region of the sediment layer has been displaced and redeposited, allowing the use of a high-accuracy pattern matching algorithm to quantify the distribution of the redeposited sediment. A set of experiments using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism are described to test and illustrate the technique. The accuracy of the procedure is assessed using a known crater profile, manufactured to simulate the features of the craters observed in the experiments

    Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    Get PDF
    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res , covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res ) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10−5 to 7 × 10−2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime

    Vortex rings impinging on permeable boundaries

    Get PDF
    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ∼ 26 − 85 × 10−8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.The experimental work presented herein was conducted during a four-months-long visit of A.M.C. to the Department of Applied Mathematics and Theoretical Physics at Cambridge University, UK. The financial support of the Ministerio de Educacion y Ciencia de España through Grant No. CGL 2009-13039 is gratefully acknowledged. The support of the UPC-Barcelona Tech University is also acknowledged.This is the accepted manuscript. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Fluids 27, 015106 (2015) and may be found at (http://scitation.aip.org/content/aip/journal/pof2/27/1/10.1063/1.4906504)

    Sediment resuspension and erosion by vortex rings

    Get PDF
    Particle resuspension and erosion induced by a vortex ringinteracting with a sediment layer was investigated experimentally using flow visualization (particle image velocimetry), high-speed video, and a recently developed light attenuation method for measuring displacements in bed level. Near-spherical sediment particles were used throughout with relative densities of 1.2–7 and diameters (d)(d) ranging between 90 and 1600 μm1600 μm. Attention was focused on initially smooth, horizontal bedforms with the vortex ring aligned to approach the bed vertically. Interaction characteristics were investigated in terms of the dimensionless Shields parameter, defined using the vortex-ring propagation speed. The critical conditions for resuspension (whereby particles are only just resuspended) were determined as a function of particle Reynolds number (based on the particle settling velocity and dd). The effects of viscous damping were found to be significant for d/δ<15d/δ<15, where δδ denotes the viscous sublayer thickness. Measurements of bed deformation were obtained during the interaction period, for a range of impact conditions. The (azimuthal) mean crater profile is shown to be generally self-similar during the interaction period, except for the most energetic impacts and larger sediment types. Loss of similarity occurs when the local bed slope approaches the repose limit, leading to collapse. Erosion, deposition, and resuspension volumes are analyzed as a function interaction time, impact condition, and sediment size

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Is a Specialist Employment Court a Better Forum for women?

    Get PDF
    A series of seminars on "Women and Employment" were held at Victoria University of Wellington in July 1997. The topic of the seminar was whether a specialist employment court is a better forum for women. The following article is based on Maxine Gay's speech at the seminar. She believes that although the Employment Court may have made gender biased decisions, the Court should nevertheless be retained. She argues that a specialist employment court is important for women because it recognises that the employment contract is one in which the parties have unequal power and it should therefore be treated differently from other contracts. She takes the view that the suggestion by the Business Round Table and Employers' Federation to abolish the Employment Court is part of a wider agenda to casualise the labour force and reduce the rights of employees.&nbsp

    Attenuation technique for measuring sediment displacement levels

    Get PDF
    A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique
    corecore