143 research outputs found

    Population genetics and reproductive strategies of african trypanosomes : revisiting available published data

    Get PDF
    Trypanosomatidae are a dangerous family of Euglenobionta parasites that threaten the health and economy of millions of people around the world. More precisely describing the population biology and reproductive mode of such pests is not only a matter of pure science, but can also be useful for understanding parasite adaptation, as well as how parasitism, specialization (parasite specificity), and complex life cycles evolve over time. Studying this parasite’s reproductive strategies and population structure can also contribute key information to the understanding of the epidemiology of associated diseases; it can also provide clues for elaborating control programs and predicting the probability of success for control campaigns (such as vaccines and drug therapies), along with emergence or re-emergence risks. Population genetics tools, if appropriately used, can provide precise and useful information in these investigations. In this paper, we revisit recent data collected during population genetics surveys of different Trypanosoma species in sub-Saharan Africa. Reproductive modes and population structure depend not only on the taxon but also on the geographical location and data quality (absence or presence of DNA amplification failures). We conclude on issues regarding future directions of research, in particular vis-à-vis genotyping and sampling strategies, which are still relevant yet, too often, neglected issues

    In silico identification of a candidate synthetic peptide (Tsgf1(18-43)) to monitor human exposure to tsetse flies in West Africa

    Get PDF
    Background: The analysis of humoral responses directed against the saliva of blood-sucking arthropods was shown to provide epidemiological biomarkers of human exposure to vector-borne diseases. However, the use of whole saliva as antigen presents several limitations such as problems of mass production, reproducibility and specificity. The aim of this study was to design a specific biomarker of exposure to tsetse flies based on the in silico analysis of three Glossina salivary proteins (Ada, Ag5 and Tsgf1) previously shown to be specifically recognized by plasma from exposed individuals. Methodology/Principal Findings: Synthetic peptides were designed by combining several linear epitope prediction methods and Blast analysis. The most specific peptides were then tested by indirect ELISA on a bank of 160 plasma samples from tsetse infested areas and tsetse free areas. Anti-Tsgf1(18-43) specific IgG levels were low in all three control populations (from rural Africa, urban Africa and Europe) and were significantly higher (p < 0.0001) in the two populations exposed to tsetse flies (Guinean HAT foci, and South West Burkina Faso). A positive correlation was also found between Anti-Tsgf1(18-43) IgG levels and the risk of being infected by Trypanosoma brucei gambiense in the sleeping sickness foci of Guinea. Conclusion/Significance: The Tsgf1(18-43) peptide is a suitable and promising candidate to develop a standardize immunoassay allowing large scale monitoring of human exposure to tsetse flies in West Africa. This could provide a new surveillance indicator for tsetse control interventions by HAT control programs

    Epidemiology of sleeping sickness in Boffa (Guinea) : where are the trypanosomes ?

    Get PDF
    Human African Trypanosomiasis (HAT) in West Africa is a lethal, neglected disease caused by Trypanosoma brucei gambiense transmitted by the tsetse Glossina palpalis gambiensis. Although the littoral part of Guinea with its typical mangrove habitat is the most prevalent area in West Africa, very few data are available on the epidemiology of the disease in such biotopes. As part of a HAT elimination project in Guinea, we carried a cross-sectional study of the distribution and abundance of people, livestock, tsetse and trypanosomes in the focus of Boffa. An exhaustive census of the human population was done, together with spatial mapping of the area. Entomological data were collected, a human medical survey was organized together with a survey in domestic animals. In total, 45 HAT cases were detected out of 14445 people who attended the survey, these latter representing 50.9% of the total population. Potential additional carriers of T. b. gambiense were also identified by the trypanolysis test (14 human subjects and two domestic animals). No trypanosome pathogenic to animals were found, neither in the 874 tsetse dissected nor in the 300 domestic animals sampled. High densities of tsetse were found in places frequented by humans, such as pirogue jetties, narrow mangrove channels and watering points. The prevalence of T. b. gambiense in humans, combined to low attendance of the population at risk to medical surveys, and to an additional proportion of human and animal carriers of T. b. gambiense who are not treated, highlights the limits of strategies targeting HAT patients only. In order to stop T. b. gambiense transmission, vector control should be added to the current strategy of case detection and treatment. Such an integrated strategy will combine medical surveillance to find and treat cases, and vector control activities to protect people from the infective bites of tsetse

    Внесок професора В. І. Дейча у розвиток меліоративної справи XIX століття

    Get PDF
    У статті висвітлюється наукова і педагогічна діяльність забутої постаті інженера-гідротехніка, професора В. І. Дейча та його внесок у розвиток меліораційної справи XIX століття.В статье освещается научная и педагогическая деятельность забытой личности инженера-гидротехника, профессора В. И. Дейча и его вклад в развитие мелиорации XIX века.The article highlights the scientific and pedagogical activity forgotten individual hydraulic engineer, Professor V. Deutsch and his contribution to the amelioration of the XIX century

    Of cattle, sand flies and men : a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination

    Get PDF
    Background: Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk factors for visceral leishmaniasis (VL) in the Indian subcontinent. Methods and Principal Findings: To inform the current regional VL elimination effort and identify key gaps in knowledge, we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir, clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale. Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kalaazar dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peridomestic vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector. Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple levels. Conclusions: Carefully designed demonstration projects, taking into account the complex web of interconnected risk factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment regimens for PKDL are urgently needed to enable the elimination initiative to succeed

    Incorporating scale dependence in disease burden estimates:the case of human African trypanosomiasis in Uganda

    Get PDF
    The WHO has established the disability-adjusted life year (DALY) as a metric for measuring the burden of human disease and injury globally. However, most DALY estimates have been calculated as national totals. We mapped spatial variation in the burden of human African trypanosomiasis (HAT) in Uganda for the years 2000-2009. This represents the first geographically delimited estimation of HAT disease burden at the sub-country scale.Disability-adjusted life-year (DALY) totals for HAT were estimated based on modelled age and mortality distributions, mapped using Geographic Information Systems (GIS) software, and summarised by parish and district. While the national total burden of HAT is low relative to other conditions, high-impact districts in Uganda had DALY rates comparable to the national burden rates for major infectious diseases. The calculated average national DALY rate for 2000-2009 was 486.3 DALYs/100 000 persons/year, whereas three districts afflicted by rhodesiense HAT in southeastern Uganda had burden rates above 5000 DALYs/100 000 persons/year, comparable to national GBD 2004 average burden rates for malaria and HIV/AIDS.These results provide updated and improved estimates of HAT burden across Uganda, taking into account sensitivity to under-reporting. Our results highlight the critical importance of spatial scale in disease burden analyses. National aggregations of disease burden have resulted in an implied bias against highly focal diseases for which geographically targeted interventions may be feasible and cost-effective. This has significant implications for the use of DALY estimates to prioritize disease interventions and inform cost-benefit analyses

    Untreated Human Infections by Trypanosoma brucei gambiense Are Not 100% Fatal

    Get PDF
    The final outcome of infection by Trypanosoma brucei gambiense, the main agent of sleeping sickness, has always been considered as invariably fatal. While scarce and old reports have mentioned cases of self-cure in untreated patients, these studies suffered from the lack of accurate diagnostic tools available at that time. Here, using the most specific and sensitive tools available to date, we report on a long-term follow-up (15 years) of a cohort of 50 human African trypanosomiasis (HAT) patients from the Ivory Coast among whom 11 refused treatment after their initial diagnosis. In 10 out of 11 subjects who continued to refuse treatment despite repeated visits, parasite clearance was observed using both microscopy and polymerase chain reaction (PCR). Most of these subjects (7/10) also displayed decreasing serological responses, becoming progressively negative to trypanosome variable antigens (LiTat 1.3, 1.5 and 1.6). Hence, in addition to the “classic” lethal outcome of HAT, we show that alternative natural progressions of HAT may occur: progression to an apparently aparasitaemic and asymptomatic infection associated with strong long-lasting serological responses and progression to an apparently spontaneous resolution of infection (with negative results in parasitological tests and PCR) associated with a progressive drop in antibody titres as observed in treated cases. While this study does not precisely estimate the frequency of the alternative courses for this infection, it is noteworthy that in the field national control programs encounter a significant proportion of subjects displaying positive serologic test results but negative results in parasitological testing. These findings demonstrate that a number of these subjects display such infection courses. From our point of view, recognising that trypanotolerance exists in humans, as is now widely accepted for animals, is a major step forward for future research in the field of HAT

    Multifaceted Population Structure and Reproductive Strategy in Leishmania donovani Complex in One Sudanese Village

    Get PDF
    Leishmania species of the subgenus Leishmania and especially L. donovani are responsible for a large proportion of visceral leishmaniasis cases. The debate on the mode of reproduction and population structure of Leishmania parasites remains opened. It has been suggested that Leishmania parasites could alternate different modes of reproduction, more particularly clonality and frequent recombinations either between related individuals (endogamy) or between unrelated individuals (outcrossing) within strongly isolated subpopulations. To determine whether this assumption is generalized to other species, a population genetics analysis within Leishmania donovani complex strains was conducted within a single village. The results suggest that a mixed-mating reproduction system exists, an important heterogeneity of subsamples and the coexistence of several genetic entities in Sudanese L. donovani. Indeed, results showed significant genetic differentiation between the three taxa (L. donovani, L. infantum and L. archibaldi) and between the human or canine strains of such taxa, suggesting that there may be different imbricated transmission cycles involving either dogs or humans. Results also are in agreement with an almost strict specificity of L. donovani stricto sensu to human hosts. This empirical study demonstrates the complexity of population structure in the genus Leishmania and the need to pursue such kind of analyses at the smallest possible spatio-temporal and ecological scales

    Genetic Control of Canine Leishmaniasis: Genome-Wide Association Study and Genomic Selection Analysis

    Get PDF
    Background: the current disease model for leishmaniasis suggests that only a proportion of infected individuals develop clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci responsible for the progression of the disease from Leishmania infection. Methodology/Principal Findings: genome-wide association and genomic selection approaches were applied to a population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ~170,000 SNPs. Firstly, we aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease. Conclusions/Significance: we estimated that a substantial proportion of the genome is affecting the trait and that its heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2-76.9 Mb maps to a locus that has previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for replication studies. An important finding of this study was the significant predictive value from using the genomic information. We found that the phenotype could be predicted with an accuracy of ~0.29 in new samples and that the affection status was correctly predicted in 60% of dogs, significantly higher than expected by chance, and with satisfactory sensitivity-specificity values (AUC = 0.63)
    corecore