2,577 research outputs found

    Fast, large volume, GPU enabled simulations for the Ly-alpha forest: power spectrum forecasts for baryon acoustic oscillation experiments

    Full text link
    High redshift measurements of the baryonic acoustic oscillation scale (BAO) from large Ly-alpha forest surveys represent the next frontier of dark energy studies. As part of this effort, efficient simulations of the BAO signature from the Ly-alpha forest will be required. We construct a model for producing fast, large volume simulations of the Ly-alpha forest for this purpose. Utilising a calibrated semi-analytic approach, we are able to run very large simulations in 1 Gpc^3 volumes which fully resolve the Jeans scale in less than a day on a desktop PC using a GPU enabled version of our code. The Ly-alpha forest spectra extracted from our semi-analytical simulations are in excellent agreement with those obtained from a fully hydrodynamical reference simulation. Furthermore, we find our simulated data are in broad agreement with observational measurements of the flux probability distribution and 1D flux power spectrum. We are able to correctly recover the input BAO scale from the 3D Ly-alpha flux power spectrum measured from our simulated data, and estimate that a BOSS-like 10^4 deg^2 survey with ~15 background sources per square degree and a signal-to-noise of ~5 per pixel should achieve a measurement of the BAO scale to within ~1.4 per cent. We also use our simulations to provide simple power-law expressions for estimating the fractional error on the BAO scale on varying the signal-to-noise and the number density of background sources. The speed and flexibility of our approach is well suited for exploring parameter space and the impact of observational and astrophysical systematics on the recovery of the BAO signature from forthcoming large scale spectroscopic surveys.Comment: 16 pages, 11 figures, accepted to MNRA

    The WiggleZ Dark Energy Survey: the selection function and z=0.6 galaxy power spectrum

    Get PDF
    We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56,159 redshifts of bright emission-line galaxies at effective redshift z=0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5% in wavenumber bands of dk=0.01 h/Mpc. A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h/Mpc. The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the Cosmic Microwave Background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers we delineate the characteristic imprint of peculiar velocities. We use these to determine the growth rate of structure as a function of redshift in the range 0.4 < z < 0.8, including a data point at z=0.78 with an accuracy of 20%. Our growth rate measurements are a close match to the self-consistent prediction of the LCDM model. The WiggleZ Survey data will allow a wide range of investigations into the cosmological model, cosmic expansion and growth history, topology of cosmic structure, and Gaussianity of the initial conditions. Our calculation of the survey selection function will be released at a future date via our website wigglez.swin.edu.au.Comment: 21 pages, 22 figures, accepted for publication in MNRA

    Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program

    Get PDF
    During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900–2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh “pollution” within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NOx in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15–1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NOy in the surface layer independent of the ozone mixing ratio

    Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    Get PDF
    Abstract. Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %

    The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    Get PDF
    We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 \pm 8 Mpc/h at z~0.2, 70 \pm 5 Mpc/h at z~0.4, 81 \pm 5 Mpc/h at z~0.6, and 75 \pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.Comment: 21 pages, 16 figures, accepted for publication in MNRA

    Propulsion in a viscoelastic fluid

    Full text link
    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.Comment: 21 pages, 1 figur
    corecore