324 research outputs found

    Cosine-modulated non-uniform filter banks

    Get PDF

    Merging quantum chemistry packages with B-splines for the multichannel scattering problem

    Full text link
    To study the photoionization of polyelectronic systems by attosecond pulses, we take advantage of existing quantum chemistry packages for the description of correlated electronic states, and of hybrid Gaussian- B-splines basis for the representation of continuum orbitals. In our approach, a short-range region, which can host all the interacting electrons and is described by commercial packages, is matched to a long-range region which describes single-ionization states in terms of a close-coupling expansion. We validate this approach showing multichannel ionization results for H

    Butterflies as bioindicators of metal contamination

    Get PDF
    Anthropogenic trace metal contamination has significantly increased and has caused many hazardous consequences for the ecosystems and human health. The Terni basin valley (Central Italy) shows a heavy load of pollutants from industrial activities, while the characteristic orography structure of the valley favours air stagnation, thus limiting air pollution dispersal. The present study conducted in 2014 aimed to determine the concentration of ten metals in five species of butterflies at nine sites in the Terni valley along a 21-km-long transect, including both relatively pristine and industrial areas. At sites where soil contamination was high for a given metal, such as for chromium as in the case of site 4 (the closest to the steel plant) and for lead as in the case of site 2 (contaminated by a firing range), higher levels of contamination were observed in the tissues of butterflies. We found a correlation between soil contamination and the concentration of Cr, Al and Sr in the tissues of some species of butterflies. The sensitivity to contamination differed among the five species; in particular, Coenonympha pamphilus was generally the species that revealed the highest concentrations of all the ten trace metals at the sites closer to the industrial area. It is known that C. pamphilus is a sedentary species and that its host plants are the Poaceae, capable of accumulating high quantities of metals in their rhizosphere region, thus providing the link with soil contamination. Therefore, monitoring the metal concentration levels in butterflies might be a good indicator and a control tool of environmental quality, specifically in areas affected by high anthropogenic pollution loads linked to a specific source

    Uncertainties in Theoretical HeI Emissivities: HII Regions, Primordial Abundance, and Cosmological Recombination

    Get PDF
    A number of recent works in astronomy and cosmology have relied upon theoretical He I emissivities, but we know of no effort to quantify the uncertainties in the atomic data. We analyze and assign uncertainties to all relevant atomic data, perform Monte Carlo analyses, and report standard deviations in the line emissivities. We consider two sets of errors, which we call "optimistic" and "pessimistic." We also consider three different conditions, corresponding to prototypical Galactic and extragalactic H II regions and the epoch of cosmological recombination. In the extragalactic H II case, the errors we obtain are comparable to or larger than the errors in some recent YpY_p calculations, including those derived from CMB observations. We demonstrate a systematic effect on primordial abundance calculations; this effect cannot be reduced by observing a large number of objects. In the cosmological recombination case, the errors are comparable to many of the effects considered in recent calculations.Comment: 5 pages, 3 figures, accepted to MNRAS Letter

    Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron

    Full text link
    This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on 354, 11 november 2016, DOI: 10.1126/science.aah5188The dynamics of quantum systems are encoded in the amplitude and phase of wave packets. However, the rapidity of electron dynamics on the attosecond scale has precluded the complete characterization of electron wave packets in the time domain. Using spectrally resolved electron interferometry, we were able to measure the amplitude and phase of a photoelectron wave packet created through a Fano autoionizing resonance in helium. In our setup, replicas obtained by two-photon transitions interfere with reference wave packets that are formed through smooth continua, allowing the full temporal reconstruction, purely from experimental data, of the resonant wave packet released in the continuum. In turn, this resolves the buildup of the autoionizing resonance on an attosecond time scale. Our results, in excellent agreement with ab initio time-dependent calculations, raise prospects for detailed investigations of ultrafast photoemission dynamics governed by electron correlation, as well as coherent control over structured electron wave packetsWe thank S. Weber for crucial contributions to the PLFA attosecond beamline, D. Cubaynes, M. Meyer, F. Penent, J. Palaudoux, for setup and test of the electron spectrometer, and O. Smirnova, for fruitful discussions. Supported by ITN-MEDEA 641789, ANR-15-CE30-0001-01-CIMBAAD, ANR11-EQPX0005-ATTOLAB, the European Research Council Advanced Grant XCHEM no. 290853, the European COST Action XLIC CM1204, and the MINECO Project no. FIS2013-42002-R. We acknowledge allocation of computer time from CCC-UAM and Mare Nostrum BS

    Reconstruction and control of a time-dependent two-electron wave packet

    Full text link
    The concerted motion of two or more bound electrons governs atomic1 and molecular2,3 non-equilibrium processes including chemical reactions, and hence there is much interest in developing a detailed understanding of such electron dynamics in the quantum regime. However, there is no exact solution for the quantumthree-body problem, and as a result even the minimal system of two active electrons and a nucleus is analytically intractable4. This makes experimental measurements of the dynamics of two bound and correlated electrons, as found in the helium atom, an attractive prospect.However, although the motion of single active electrons and holes has been observed with attosecond time resolution5-7, comparable experiments on two-electron motion have so far remained out of reach. Here we showthat a correlated two-electron wave packet can be reconstructed froma 1.2-femtosecondquantumbeatamong low-lying doubly excited states in helium.The beat appears in attosecond transient-absorption spectra5,7-9 measured with unprecedentedly high spectral resolution and in the presence of an intensity-tunable visible laser field.Wetune the coupling10-12 between the two low-lying quantum states by adjusting the visible laser intensity, and use the Fano resonance as a phase-sensitive quantum interferometer13 to achieve coherent control of the two correlated electrons. Given the excellent agreement with large-scalequantum-mechanical calculations for thehelium atom, we anticipate thatmultidimensional spectroscopy experiments of the type we report here will provide benchmark data for testing fundamental few-body quantumdynamics theory in more complex systems. Theymight also provide a route to the site-specificmeasurement and control of metastable electronic transition states that are at the heart of fundamental chemical reactionsWe thank E. Lindroth for calculating the dipole moment (2p2|r|sp2,3+), and also A. Voitkiv, Z.-H. Loh, and R. Moshammer for helpful discussions. We acknowledge financial support by the Max-Planck Research Group Program of the Max-Planck Gesellschaft (MPG) and the European COST Action CM1204 XLIC. L. A. and F. M. acknowledge computer time from the CCC-UAM and Mare Nostrum supercomputer centers and financial support by the European Research Council under the ERC Advanced Grant no. 290853 XCHEM, the Ministerio de Economía y Competitividad projects FIS2010-15127, FIS2013-42002-R and ERA-Chemistry PIM2010EEC-00751, and the European grant MC-ITN CORIN

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    BIOCHRONOLOGY OF SELECTED MAMMALS, MOLLUSCS AND OSTRACODS FROM THE MIDDLE PLIOCENE TO THE LATE PLEISTOCENE IN ITALY. THE STATE OF THE ART

    Get PDF
    The Authors have elaborated four range charts of mammalian (large and micro), molluscs and fresh-water and brackish ostracodes faunas, for the selected Plio-Pleistocene fossiliferous localities of the Italy. A new Mammal Age (Aurelian) correlatable to late Middle and Late Pleistocene has been defined. Inside this age two Faunal Units (Torre in Pietra and Vitinia) have been defined as characteristic for Early and Middle Aurelian, while no gisements have been chosen for the late Aurelian. Biochronological units are calibrated on magnetostratigraphic and isotopic scales and by radiometric datings.   &nbsp

    BIOCHRONOLOGY OF SELECTED MAMMALS, MOLLUSCS AND OSTRACODS FROM THE MIDDLE PLIOCENE TO THE LATE PLEISTOCENE IN ITALY. THE STATE OF THE ART

    Get PDF
    The Authors have elaborated four range charts of mammalian (large and micro), molluscs and fresh-water and brackish ostracodes faunas, for the selected Plio-Pleistocene fossiliferous localities of the Italy. A new Mammal Age (Aurelian) correlatable to late Middle and Late Pleistocene has been defined. Inside this age two Faunal Units (Torre in Pietra and Vitinia) have been defined as characteristic for Early and Middle Aurelian, while no gisements have been chosen for the late Aurelian. Biochronological units are calibrated on magnetostratigraphic and isotopic scales and by radiometric datings.   &nbsp
    corecore