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ABSTRACT 
In this work a method to design filter banks 
that allow to split the spectpm of a signal into 
non-uniform width subbands is presented, The 
Hters of the banks are obtained by the cosine 
modulation of more than one prototype. The 
prototypes are designed by imposing the cancel- 
lation of the main component of aliasing in the 
reconstructed signal. Aliasing compohents and 
their cancellation in rational sampling factors 
banks are described in the details and design 
examples are presented. 

1. INTROQUCTION 
In this work the problem of designing filter banks that 
analyze the input signal into non-uniform width sub- 
bands is addressed. Non-uniform filter banks have been 
studied, for example, in [1]-[6]. Here, a new method to 
design filter banks with rational decimation factors is 
proposed: it extends some preliminary work, presented 
in [?I, which considered only integer decimation factors. 
The design method is based on the cosine modulation of 
different linear phase rototypes; it does not use com- 
plex prototypes as in 61 and all the filters are obtained 
through a direct design, i.e., the filters of the banks are 
not designed as a combination of narrower passband 
filters. The design aims at the cancellation of the main 
component of aliasing in the reconstructed signal: this 
imposes constraints on the prototypes which become 
related to each other. Experimental results to show 
the effectiveness of the procedure are also shown. 

2. ALIASING COMPONENTS IN 
COSINEMODULATED 

NON-UNIFORM FILTER BANKS 
Consider the system in Fig. 1, where non-uniform anal- 
ysis/synthesis banks having rational sampling factors 
&?I/Mm, m=O,. . .,M-1, are shown. The input-output 
relationship in the z-domain is given by: 

M-1 1 1 Rm-1 

X ( 2 )  = -- 
m=O &?I Mm p=o 

where WM = e-j2=iM. Eq. (1) highlights the re- 
construction transfer function and the aliasing terms. 
Suppose that each filter has real coefficients and is ob- 
tained through the cosine-modulation of a low-pass pro- 
totype; therefore, the impulse responses of the m-th 
branch analysis/synthesis filters are given by: 

N -1 

N 
hm(n)=2gm(7a)cos((alcm+l)~(n-  +)+&a) 

+) - em) fm(n)= 2gm(n)cos((2Ic, + 1)&(n- 

for m = 0,1,. . . , M - 1. Nm is the length of 
The rototy es gm(n)  have a linear phase and 
gm tn7 = g m[ N, - 1 - n). The index k,,, selects where 
the passban is located, while the phase terms em are 
chosen to satisfy the aliasing cancellation constraint, as 
shown in the following. 

If we translate (2 in the a-domain, then the transfer 

= hm(Nm - 1 - n) 

functions of each fi 1 ter can be expressed as: 

Hm(z) = um(z) + Vm(x) 

Fm(z) = Om(z) + Qm(2) 

(3) 

(4) 
where 

(5) 

(6) 
As can be easily verified, Um(w) and Om(&) are right- 
shifted versions of Gm(u) ,  while Vm(U) and Vm(w) are 
left-shifted versions of G, (U). 

Due to the M,-fold upsampler in the synthesis stage, 
images of the m-th subband spectrum are filtered by 
F ). The main aliasing components are produced 
at mk t e low-frequency and at the high-frequency edges 
of the passband of Fm(z): let A F w ) k )  and AFgh)  
be these components, respectively. T ey have been e- 
scribed for an uniform bank in [8 If we consider that 

of z(n) and if only the more relevant terms are retained, 
then the main component of aliasing can be expressed 

f) 
each branch operates on an &-fo 1; d upsampled version 
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as: 

A$‘““)(z) = 
1 

Mm 
- [ em(z) vm (zWL;)X(zRm w&;R-)+ 

+Vm(*)um (zw;:m)x(zRm m (7) 

&“h)(z) = 
1 - Mm [ Om(Z)Vm (zwg;+’))X(zR” w$;+’)Rm )-I- 

+Qm (*)Um (zw;(p+”)x( ZR, w;f”+‘)R”)] (8) 

In [SI it is shown that for uniform cosinemodulated fil- 
ter banks the component APgh)(z) of the m-th branch 
is cancelled by the component A:;) (z) of the (m+l)- 
th branch. In the non-uniform case, we have to consider 
that the cancellation may occurr also by coupling the 
~ ~ g h ) ~ ~ a g h ) ,  (low)-(low) or (low)-(high) aliasin com- 
ponents coming from the m-th and from the m+l)- 
th branch. For example, consider the bank { 1 B 5, 3/5, 
1/51 that can be implemented using filter8 having a 

and equal to 7r/5 and centered, on the positive 
ency axis, in s/10, s / 2  and 9a/10. Two differ- 

ent prototypes are necessary to design the filters in the 
m=O and m=l branches; moreover, we have to choose 
ko = 0 and kl = 2 .  The aliasing component A ~ ) ( Z )  
produced in the m=O branch at the synthesis stage 
must be cancelled by A ~ ) ( z )  J- 3, where &(z) J. M 
denotes the z-transform of the M-fold subsampled ver- 

cellation imposes on the prototypes are dis- 
7 In Of the q(nl. €0 lowing section the constraints that the alias- 

3. ALIASING CAN AND 
D E § I ~ ~  P 

In general, four cases must be taken into account: 

a) AP~*) (Z)  J. R, + A ~ : ) ( Z )  J- R , + ~  = o 
b) AEm)(*) -1 R, -I- A:;;(Z) J- &+I = 0 

c) A e w )  (z) J. & A::!) ( z )  -1 &+I = 0 
d) Agfggh)(z) J. & + ACT;)(*) J. &+I = 0 
Consider the case a). In [9] it is shown that if the 

phase terms satisfy one of the conditions shown in the 
first IOW, third column of Table 1 (the condition to be 
chosen depends on the values of k,, &, M,, km?1, 
R,+l and Mm+l) then aliasing cancellation occurs if 

It can be demonstrated 91 that the cancellation of 
aliasing for the cases b)-d) I eads to the same constraint 

to match the main component o i aliasing of each side 

on the prototypes. 
When we substitute z = eJw , the left hand side (right 

hand side) of (9) is a 2i~-periodic function in w and 
is composed by the sum of & (&+I) periodic func- 
tions with period 2&7r (2&+17r . Therefore, we have 

of (9) that falls in the interval ( -T,T);  this occurs 
by choosing the index p of the summations equal to 
zero. Moreover, consider the zero-phase filters associ- 
ated with each linear phase prototype. Their frequency 
responses are red functions and are defined as 

(10) 
.N -lW 

G F ) ( w )  = Gm(w)e’* 

If (10) and p = 0 are substituted into (9) and if the fol- 
lowing condition on the lengths of the prototype filters 
is imposed 

then we obtain the final constraint on the frequency 
responses of the zero-phase prototype filters, that is 

Suppose that the prototypes have an ideal stopband, 
i.e., with zero gain; hence (12 )  can be fulfilled by a 
proper choice of the transition band. The transition 
bandwidth of Gm+l(w)  must be & &+I times that 
of G m ( w ) ,  while the magnitudes wi 1/ 1 have to be pro- 
portional according to the factor J““ R,;Mz+,. Let 
Wc,m = 7r/(2Mm) be the cut-off frequency of G m ( w ) .  
Suppose the transition band, having width Aw,, IS 
centered in Wc,m and let W p , m  = wc,m - ( A w m / 2 )  and 
w ~ , ~  = w,,m + ( A w m / 2 )  be the upper bound of the 
passband and the lower bound of the stopband, respec- 
tively, of G m ( w ) .  Therefore, the transition bands of 
the prototy es must satisfy &Awm = &+lAwm+l. 
Moreover, 8 2 )  is satisfied if the zero-phase frequency 
response of the prototype G m + l ( w )  is derived as fol- 
lows: 

G(IP) 
m+ 1 ( w )  = 

- A < w 5 -Ws,m+l 

-Ws,m+l < w 5 - ~ p , n + ~  

- wp,m+l < w 5 Wp,m+l 
- - 
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Hence, the prototype filters that lead to aliasin can- 

other. Assuming the aliasing components have been 
completely eliminated, the input-output relationship 
shown in (1) becomes 

cellation can not be designed independently o rp each 

(14) 
The prototype filter lengths are constrained to satisfy 
the condition = c, m = 0,. . . , M - 1, where c is 
a constant and represents the delay introduced by the 
analysis/synthesis banks. We will suppose that c is an 
integer, 80 that the signals reconstructed in each branch 
of the structure can be easily realigned. Phase error is 
absent since the synthesis filters are a time reversed 
version of the analysis filters, while the magnitude er- 
ror is maintained at low levels if T(z)  is approximately 
allpass. The reconstruction error IS reduced choosing 
prototype filters with high stopband attenuation and 
with a power complementary transition band, i.e., sat- 
isfying 

(15) 
I Gm(w) I2 + I Gm(& -w)  12= %Mm 

for Wp,m < w wa,m 

Prototype filters built by using (13) still maintain the 
power-complementary transition band property and 
make T ( z )  approximately allpass. 

The procedure that allows to design a filter bank 
with given rational decimation factors foresees the fol- 
lowing steps: 

1) Select the index m for which Rk/Mk, k=O,. . .,M- 
1, is minimum. Design a real coefficients pro- 
totype gm(n), with linear phase Gm(W), cut-off 
frequency w ~ , ~  = &, characterized by a gain 
4 s  in the passband and by a power com- 
plementary transition band, i.e., satisfyin (15). 
For example, the methods described in [lOf[ll][6] 
can be used. 

2) Find the zero-phase filter GkP)(u) related to 
Gm(w): Gkp'(w) is a real function symmetrical 
around w = 0; build the zero-phase frequency 
response G$)l(w) according to (13) and obtain 

by using (10); compute gm+l(n) from 
Gm+l?! Gm+l w by truncated Inverse Fourier Transform 
or by using the frequency sampling method. 

3) Repeat step 2) for each pair of branches of the 
structure that needs a new prototype filter to be 
designed. The non-uniform bank can be built 
through cosine modulation of the prototypes and 
by using the correct phase terms (see Table 1). 

In the following section this procedure is used to de- 
sign examples of non-uniform banks. 

4. EXPERIMENTAL RESULTS 
To show the effectiveness of the design procedure de- 
scribed in the previous section we have considered two 
examples of non-uniform banks. We will indicate with 
K and 0 the sets { km, m=O, ..., M-1 } and { em, 
m=O,. . .,M-1 1, respectively. 

Example 1: Non-uniform bank composed by four 
branches with rational decimation factors { 2/7, 2/7, 

2/7 1/71. Two prototypes have to be designed 
(go(n) = gl(n) = g2 n)). In this example more than 
one choice is possible \ or K. We will use K={ 0,5,4,6 1 

Example 2: 
branches with rational decimation factors 6 1/2, 1/4, 
3/16, 1/16 }. This is an example in which t e rational 
sampling factors have different denominators. All the 
aliasing couplin s are of the type (high)-(lotu); K={O, 
2,4, 15 }; 0 = 8 ~ / 4 ,  - ~ / 4 ,  r/4, -n/4 ). 

The performance of the presented design method is 
evaluated in terms of both the overall distortion func- 
tion T(u) and the residual aliasing error. As to the lat- 
ter error, a global measure relative to the whole struc- 
ture is used in this work. According to the input-output 
relationship in (l) ,  the aliasing contribution relative to 
X ( Z W ~ : )  can be written as 

Al,m(Z) = j&&-:$-' Hm(Z*W;,W',)* 
. F m ( z k  G,) 

(16) 
with m=O,. . .,M-1, k0,. . .,Mm - 1. The functions 

(w) are 2n-periodic functions. - ' All the aliasing 
terms Al+m(z) that refer to the same shifted version 
of X ( z ) ,  i.e., having the same value of W';, must be 
summed up, so that the following aliasing error can be 
defined: 

(17) 

condition (Z&) mod Mm = r. 

m=O,. . .,M-1 and where the 
inner summation in 
of 1 and m 

evaluated on l y for the values 

Therefore 

(19) 

can be used as measures of the quality of the designed 
banks. 

Table 2 and 3 reports the results obtained for Ex- 
ample 1 and 2, respectively, for different lengths of the 
prototypes. As can be seen, both the magnitude dis- 
tortion and the aliasing error are kept small 

In Fig. 2 the frequency responses of the final m i n e  
modulated analysis filters relative to Example 1 and 
obtained with prototypes having 82 and 163 coefficients 
are shown: fromthe inspection of this figure it can be 
deduced that the design based on (13) does not degrade 
the passband and the stopband characteristics of the 
new prototypes. 

5. CONCLUSIONS 
In this work a method to design non-uniform fiter banks 
with rational sampling factors has been presented. The 
method is simple and requires numerical optimization 
of only one prototype, being the others derived in a 
straightforward way from this one. For this reason, the 
method seems particularly suitable when banks with a 
large number of coefficients must be designed. 
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