477 research outputs found
Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells
Chronic myeloid leukaemia (CML) is maintained by a rare population of tyrosine kinase inhibitor (TKI)-insensitive malignant stem cells. Our long-term aim is to find a BcrAbl-independent drug that can be combined with a TKI to improve overall disease response in chronic-phase CML. Omacetaxine mepesuccinate, a first in class cetaxine, has been evaluated by clinical trials in TKI-insensitive/resistant CML. Omacetaxine inhibits synthesis of anti-apoptotic proteins of the Bcl-2 family, including (myeloid cell leukaemia) Mcl-1, leading to cell death. Omacetaxine effectively induced apoptosis in primary CML stem cells (CD34<sup>+</sup>38<sup>lo</sup>) by downregulation of Mcl-1 protein. In contrast to our previous findings with TKIs, omacetaxine did not accumulate undivided cells <i>in vitro</i>. Furthermore, the functionality of surviving stem cells following omacetaxine exposure was significantly reduced in a dose-dependant manner, as determined by colony forming cell and the more stringent long-term culture initiating cell colony assays. This stem cell-directed activity was not limited to CML stem cells as both normal and non-CML CD34<sup>+</sup> cells were sensitive to inhibition. Thus, although omacetaxine is not leukaemia stem cell specific, its ability to induce apoptosis of leukaemic stem cells distinguishes it from TKIs and creates the potential for a curative strategy for persistent disease
Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung
Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
Negotiating nature : ecology, politics, and nomadism in the forests of Mediterranean Anatolia, 1870-1920
This dissertation examines the politics of forestry in the context of late Ottoman Mediterranean Anatolia. Exploring the power struggles among officials, timber traders, and Tahtacı communities, this study discusses how modern forestry practices were negotiated at the local level. In the nineteenth century, in order to gain more effective control over forests, the Ottoman government introduced a series of reforms toward “scientific forestry.” In the implementation of these reforms not only did opposing interests clash at the central level but local interest groups involved in regional trade networks also appeared as influential actors. On the one hand, negotiations between officials and traders undermined “scientific forestry” as a high modernist ideal. On the other, this complex network constituted an integral part of modern forestry practices and prevailing power struggles. Despite fragmented interests within the administration as well as various obstacles officials encountered in monitoring forests, the new forestry practices brought about a dramatic transformation of the countryside. Most importantly, increasing pressure on forests and forest-dependent communities due to intensified commercialization caused an overexploitation of nature and labor. Focusing on the changing subsistence strategies of Tahtacı communities, this study investigates the impact of these changes on the hill societies of Mediterranean Anatolia. Cities, Migration and Global Interdependenc
Subvalvular membrane on the left ventricular outflow tract: multidetector computerised tomography imaging
In this report, we describe a patient with a subvalvular membrane on the left
ventricular outflow tract. Discrete subvalvular membrane is a cause of left ventricular
outflow tract narrowing. Multidetector computerised tomography can
demonstrate the anatomical three-dimensional view of this region and guide
for surgery. (Folia Morphol 2011; 70, 4: 315–317
The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer
available in PMC 2011 February 3.MCL-1 has emerged as a major oncogenic and chemoresistance factor. A screen of stapled peptide helices identified the MCL-1 BH3 domain as selectively inhibiting MCL-1 among the related anti-apoptotic Bcl-2 family members, providing insights into the molecular determinants of binding specificity and a new approach for sensitizing cancer cells to apoptosis.National Institutes of Health (U.S.) (NIH award 5RO1GM084181)National Institutes of Health (U.S.) (NIH grant 5P01CA92625)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F31CA144566)Burroughs Wellcome Fund (Career Award
Rhodiola rosea L.:from golden root to green cell factories
Rhodiola rosea L. is a worldwide popular plant with adaptogenic activities that have been and currently are exploited in the traditional medicine of many countries, as well as, examined in a number of clinical trials. More than 140 chemical structures have been identified which belong to several natural product classes, including phenylpropanoid glycosides, phenylethanoids, flavonoids and essential oils, and are mainly stored in the rhizomes and the roots of the plant. A number of mechanisms contribute to the adaptogenic activities of R. rosea preparations and its phytochemical constituents. Among them, the intrinsic inducible mammalian stress responses and their effector proteins, such as heat shock protein 70 (Hsp70), are the most prominent. Due to its popular medicinal use, which has led to depletion of its natural habitats, R. rosea is now considered as endangered in most parts of the world. Conservation, cultivation and micropropagation are all implemented as potential preservation strategies. A number of in vitro systems of R. rosea are being developed as sources of pharmaceutically valuable secondary metabolites. These are greatly facilitated by advances in elucidation of the biosynthetic pathways and the enzymes, which catalyse the production of these secondary metabolites in the plant. In addition, biotechnological approaches show promise towards achieving sustainable production of R. rosea secondary metabolites.</p
Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients
Background
Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown.
Methods
Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding.
Results
A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55).
Conclusions
Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218. opens in new tab.
Acceptance of emerging renal oncocytic neoplasms: a survey of urologic pathologists
Oncocytic renal neoplasms are a major source of diagnostic challenge in genitourinary pathology; however, they are typically nonaggressive in general, raising the question of whether distinguishing different subtypes, including emerging entities, is necessary. Emerging entities recently described include eosinophilic solid and cystic renal cell carcinoma (ESC RCC), low-grade oncocytic tumor (LOT), eosinophilic vacuolated tumor (EVT), and papillary renal neoplasm with reverse polarity (PRNRP). A survey was shared among 65 urologic pathologists using SurveyMonkey.com (Survey Monkey, Santa Clara, CA, USA). De-identified and anonymized respondent data were analyzed. Sixty-three participants completed the survey and contributed to the study. Participants were from Asia (n = 21; 35%), North America (n = 31; 52%), Europe (n = 6; 10%), and Australia (n = 2; 3%). Half encounter oncocytic renal neoplasms that are difficult to classify monthly or more frequently. Most (70%) indicated that there is enough evidence to consider ESC RCC as a distinct entity now, whereas there was less certainty for LOT (27%), EVT (29%), and PRNRP (37%). However, when combining the responses for sufficient evidence currently and likely in the future, LOT and EVT yielded > 70% and > 60% for PRNRP. Most (60%) would not render an outright diagnosis of oncocytoma on needle core biopsy. There was a dichotomy in the routine use of immunohistochemistry (IHC) in the evaluation of oncocytoma (yes = 52%; no = 48%). The most utilized IHC markers included keratin 7 and 20, KIT, AMACR, PAX8, CA9, melan A, succinate dehydrogenase (SDH)B, and fumarate hydratase (FH). Genetic techniques used included TSC1/TSC2/MTOR (67%) or TFE3 (74%) genes and pathways; however, the majority reported using these very rarely. Only 40% have encountered low-grade oncocytic renal neoplasms that are deficient for FH. Increasing experience with the spectrum of oncocytic renal neoplasms will likely yield further insights into the most appropriate work-up, classification, and clinical management for these entities
Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets
Solution-processed quantum wells, also known as colloidal nanoplatelets (NPLs), are emerging as promising materials for colloidal optoelectronics. In this work, we report the synthesis and characterization of CdSe/CdTe core/crown NPLs exhibiting a Type-II electronic structure and Type-II specific optical properties. Here, based on a core-seeded approach, the CdSe/CdTe core/crown NPLs were synthesized with well-controlled CdTe crown coatings. Uniform and epitaxial growth of CdTe crown region was verified by using structural characterization techniques including transmission electron microscopy (TEM) with quantitative EDX analysis and X-ray diffraction (XRD). Also the optical properties were systematically studied in these Type-II NPLs that reveal strongly red-shifted photoluminescence (up to similar to 150 nm) along with 2 orders of magnitude longer fluorescence lifetimes (up to 190 ns) compared to the Type-I NPLs owing to spatially indirect excitons at the Type-II interface between the CdSe core and the CdTe crown regions. Photoluminescence excitation spectroscopy confirms that this strongly red-shifted emission actually arises from the CdSe/CdTe NPLs. In addition, temperature-dependent time-resolved fluorescence spectroscopy was performed to reveal the temperature-dependent fluorescence decay kinetics of the Type-II NPLs exhibiting interesting behavior. Also, water-soluble Type-II NPLs were achieved via ligand exchange of the CdSe/CdTe core/crown NPLs by using 3-mercaptopropionic acid (MPA), which allows for enhanced charge extraction efficiency owing to their shorter chain length and enables high quality film formation by layer-by-layer (LBL) assembly. With all of these appealing properties, the CdSe/CdTe core/crown heterostructures having Type-II electronic structure presented here are highly promising for light-harvesting applications
Evaluation of the metabolism properties of choline kinase alpha in neoplasms of the parathyroid glands. A pilot study
BACKGROUND: Primary hyperparathyroidism (PHPT) is a widespread endocrine disease characterized by excessive production of parathyroid hormone (PTH) due to parathyroid gland hyperplasia (PGH) or tumor lesions (adenoma or cancer of the parathyroid gland (PG) in 80% and 1–5% of cases respectively). Choline kinase α–alpha (XKα) overexpression is described in tumors of different localization, but there is no data on its expression in PG tumors. AIMS: To study the character of XKα expression in PG neoplasms and its relationship with clinical, laboratory, and visualization characteristics (positron emission tomography combined with computed tomography (PET/CT) with 18F–fluorocholine (18F–FC)). MATERIALS AND METHODS: The material for the study was based on tissue samples from 10 patients of 34–70 years old (Me = 61.5; [48; 66]), with a laboratory–confirmed diagnosis of PHT. An immunohistochemical study (IHC) was carried out on materials from 2 patients with hyperplasia of the main cells, from 5 patients with adenoma of PG, from 1 patient with atypical adenoma and 1 with carcinoma of PG; in 1 case the metastasis of cancer of the neck with lymph node was examined. RESULTS: The expression of XKα is spotted in all types of PG cells (chief cells: active and inactive forms), transitional forms between the chief cells and oxyphil; oxyphil cells, but it was most intense in active chief cells. The expression of XKα was observed in neoplasms of PG of various degrees of malignancy. In the most numerous group of PG formations with a favorable prognosis (11 samples from 7 patients), no statistically significant correlation (p> 0.05) was obtained between the intensity expression of the XKα, of the PTH and the proliferative activity index Ki–67, the level of radiopharmaceutical accumulation in PET/CT with 18F–FC (SUVmax) and laboratory data (PTH, Ca, Ca++). CONCLUSIONS: In the majority of investigated cases, moderate and intensive expression of the XKα was detected in PG cells. A small amount of studied cases does not allow us to identify the connection between the intensity of XKα expression and the malignant potential for the formation of PG
- …
