3 research outputs found

    Metal transport by gas sloshing in M87

    Full text link
    We present the results of an XMM-Newton mosaic covering the central ~200 kpc of the nearby Virgo cluster. We focus on a strong surface brightness discontinuity in the outskirts of the brightest cluster galaxy, M87. Using both XMM-Newton and Suzaku, we derive accurate temperature and metallicity profiles across this feature and show that it is a cold front probably due to sloshing of the Virgo ICM. It is also associated with a discontinuity in the chemical composition. The gas in the inner, bright region of the front is ~40% more abundant in Fe than the gas outside the front, suggesting the important role of sloshing in transporting metals through the ICM. For the first time, we provide a quantitative estimate of the mass of Fe transported by a cold front. This amounts to ~6% of the total Fe mass within the radial range affected by sloshing, significantly more than the amount of metals transported by the AGN in the same cluster core. The very low Fe abundance of only ~0.2 solar immediately outside the cold front at a radius of 90 kpc suggests we are witnessing first-hand the transport of higher metallicity gas into a pristine region, whose abundance is typical of the cluster outskirts. The Mg/Fe and O/Fe abundance ratios remain approximately constant over the entire radial range between the centre of M87 and the faint side of the cold front, which requires the presence of a centrally peaked distribution not only for Fe but also for core-collapse type supernova products. This peak may stem from the star formation triggered as the BCG assembled during the protocluster phase.Comment: accepted for publication in MNRA

    The Interaction of 3C401 with the Surrounding Intracluster Medium

    Full text link
    We present an observation of the radio-galaxy 3C401 and the surrounding intracluster medium (ICM) of its host galaxy cluster by the Chandra X-ray Observatory. This luminous radio-galaxy is notable in that it has characteristics intermediate between the FRI and FRII morphologies. We clearly detect point-like emission coincident with the radio-core of 3C401, although the spatial resolution of even Chandra is only 2kpc at the distance of 3C401 (z=0.201) and so the possibility remains that this is a dense (and rapidly cooling) thermal gaseous core in the center of the ICM atmosphere. Strong departures from spherical symmetry in the central 10-20kpc of the ICM clearly suggest interaction between the ICM and the radio-lobes of 3C401. A central X-ray bar probably results from the evacuation of two ICM cavities by the expanding radio lobes. Beyond these central regions, the cluster possesses a flatter profile than many clusters of comparable mass suggesting the importance of ICM heating and entropy injection by 3C401. We detect an interesting cross-like structure in the ICM on 100kpc scales. We speculate that this could be a radio-galaxy induced disturbance corresponding to a time when 3C401 was substantially more powerful. A particularly exciting possibility is that this cross-like structure corresponds to a large scale global g-mode oscillation excited by a past outburst of 3C401.Comment: 7 pages, 5 postscript figures. Accepted for publication in MNRA

    Studying Galactic interstellar turbulence through fluctuations in synchrotron emission First LOFAR Galactic foreground detection

    Get PDF
    <p>Aims. The characteristic outer scale of turbulence (i. e. the scale at which the dominant source of turbulence injects energy to the interstellar medium) and the ratio of the random to ordered components of the magnetic field are key parameters to characterise magnetic turbulence in the interstellar gas, which affects the propagation of cosmic rays within the Galaxy. We provide new constraints to those two parameters.</p><p>Methods. We use the LOw Frequency ARray (LOFAR) to image the diffuse continuum emission in the Fan region at (l, b) (137.0., + 7.0.) at 80 '' x 70 '' resolution in the range [146, 174] MHz. We detect multi-scale fluctuations in the Galactic synchrotron emission and compute their power spectrum. Applying theoretical estimates and derivations from the literature for the first time, we derive the outer scale of turbulence and the ratio of random to ordered magnetic field from the characteristics of these fluctuations.</p><p>Results. We obtain the deepest image of the Fan region to date and find diffuse continuum emission within the primary beam. The power spectrum displays a power law behaviour for scales between 100 and 8 arcmin with a slope a = -1.84 +/- 0.19. We find an upper limit of 20 pc for the outer scale of the magnetic interstellar turbulence toward the Fan region, which is in agreement with previous estimates in literature. We also find a variation of the ratio of random to ordered field as a function of Galactic coordinates, supporting different turbulent regimes.</p><p>Conclusions. We present the first LOFAR detection and imaging of the Galactic diffuse synchrotron emission around 160 MHz from the highly polarized Fan region. The power spectrum of the foreground synchrotron fluctuations is approximately a power law with a slope a beta-1.84 up to angular multipoles of similar to 1300, corresponding to an angular scale of similar to 8 arcmin. We use power spectra fluctuations from LOFAR as well as earlier GMRT andWSRT observations to constrain the outer scale of turbulence (Lout) of the Galactic synchrotron foreground, finding a range of plausible values of 10-20 pc. Then, we use this information to deduce lower limits of the ratio of ordered to random magnetic field strength. These are found to be 0.3, 0.3, and 0.5 for the LOFAR, WSRT and GMRT fields considered respectively. Both these constraints are in agreement with previous estimates.</p>
    corecore