12 research outputs found
The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019
Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Mitigating risk associated with the management of trunk mains network.
Large diameter trunk mains are the life line of the water supply system. They convey large volumes of water between treatment works and local distribution networks, sometimes over quite significant distances (tens to hundreds of kilometres). Compared to smaller diameter distribution mains, trunk mains tend to have low failure rates, but when they do fail, the consequences are potentially much more significant, with direct, indirect and societal costs. Worldwide, a significant proportion of trunk mains are still made of aging cast iron material. Remarkably, these aging assets have in some cases outlived the pipes that replaced deteriorated parts of the network. Even so, many cast iron pipes are beginning to approach, or have already exceeded, their design life: consequently, out of a large population of pipes, some are failing whilst some still have considerable residual life. Asset management, in this context focussing on the targeted replacement of degrading main, requires tools and models for the prediction of the future performance of the network. Several mechanistic deterioration models have been developed in recent years, which attempt to predict the condition of cast iron pipes, but few methodologies have specifically targeted water trunk mains. Nevertheless, the requirement has remained for a robust deterioration and failure model for cast iron trunk mains, worldwide. This project, being part of a wider, collaborative project between Thames Water Utilities and the University of Surrey, has reviewed existing failure models for cast iron trunk mains and sought to modify these based on information arising from other areas of the project. This has included, new understanding of the corrosion of cast iron trunk main, the use of fracture mechanics to predict failure and non-destructive evaluation data gathering techniques has provided significant insight into improvements that can be made to failure models. In particular, the present research has shown how traditional loss-of-section approach to the residual strength of corroded pipes can be used alongside a fracture mechanics approach, in order to provide boundaries to the failure “envelope”. This novel methodology has been incorporated as part of an enhanced modelling framework, which has shown to improve the failure predictions across the network. The enhanced model also enables more detailed analysis of sections of the pipes that have been surveyed on site
Mitigating risk associated with the management of trunk mains network.
Large diameter trunk mains are the life line of the water supply system. They convey large volumes of water between treatment works and local distribution networks, sometimes over quite significant distances (tens to hundreds of kilometres). Compared to smaller diameter distribution mains, trunk mains tend to have low failure rates, but when they do fail, the consequences are potentially much more significant, with direct, indirect and societal costs.
Worldwide, a significant proportion of trunk mains are still made of aging cast iron material. Remarkably, these aging assets have in some cases outlived the pipes that replaced deteriorated parts of the network. Even so, many cast iron pipes are beginning to approach, or have already exceeded, their design life: consequently, out of a large population of pipes, some are failing whilst some still have considerable residual life.
Asset management, in this context focussing on the targeted replacement of degrading main, requires tools and models for the prediction of the future performance of the network. Several mechanistic deterioration models have been developed in recent years, which attempt to predict the condition of cast iron pipes, but few methodologies have specifically targeted water trunk mains. Nevertheless, the requirement has remained for a robust deterioration and failure model for cast iron trunk mains, worldwide.
This project, being part of a wider, collaborative project between Thames Water Utilities and the University of Surrey, has reviewed existing failure models for cast iron trunk mains and sought to modify these based on information arising from other areas of the project. This has included, new understanding of the corrosion of cast iron trunk main, the use of fracture mechanics to predict failure and non-destructive evaluation data gathering techniques has provided significant insight into improvements that can be made to failure models.
In particular, the present research has shown how traditional loss-of-section approach to the residual strength of corroded pipes can be used alongside a fracture mechanics approach, in order to provide boundaries to the failure “envelope”. This novel methodology has been incorporated as part of an enhanced modelling framework, which has shown to improve the failure predictions across the network. The enhanced model also enables more detailed analysis of sections of the pipes that have been surveyed on site
The Iranian Plateau during the Bronze Age
The book compiles a portion of the contributions presented during the symposium “Urbanisation, commerce, subsistence and production during the third millennium BC on the Iranian Plateau”, which took place at the Maison de l’Orient et de la Méditerranée in Lyon, the 29-30 of April, 2014. The twenty papers assembled provide an overview of the recent archaeological research on this region of the Middle East during the Bronze Age. The socio-economic transformation from rural villages to towns and nations has prompted many questions into this evolution of urbanisation. What was the impact of interactions between cultures in the Iranian Plateau and the surrounding regions (Mesopotamia, the South Caucasus, Central Asia, Indus Valley)? What was the overall context during the Bronze Age on the Iranian Plateau? What was the extent and means of the expansion of the Kuro-Araxe culture? How did the Elamite Kingdom become established? What new knowledge has been contributed by the recent excavations and studies undertaken in the east of Iran? What was the influence of the Indus Valley culture, known as an epicentre of urbanisation in South Asia? What are the unique characteristics of the ancient cultures in Iran? While the urbanisation of early Mesopotamia has been the subject of much debate for several decades, this topic has only recently been raised in respect to the Iranian Plateau. This volume is the product of an international community from Iranian, European, and American institutions, consisting of recognised specialists in the archaeology of the Iranian Bronze Age. It provides an overview of the latest research, including abundant results from current on-going excavations. The current state of archaeological research in Iran, comprising many dynamic questions and perspectives, is presented here in the form of original contributions on the first emergence of towns in the Near and Middle East.L’ouvrage rassemble une partie des contributions présentées lors du colloque «Urbanisation, commerce, subsistance et production au iiie millénaire avant J.-C. sur le Plateau iranien» qui s’est tenu à la Maison de l’Orient et de la Méditerranée à Lyon les 29 et 30 avril 2014. Les vingt articles réunis livrent un état récent de la recherche archéologique dans cette région du Moyen‑Orient pour l’âge du Bronze. Le développement socio-économique entre le mode de vie rural et la formation des villes et des états soulève de nombreuses interrogations sur le processus de l’urbanisation. Quel est l’impact des relations culturelles entre le Plateau iranien et les régions adjacentes (Mésopotamie, Sud-Caucase, Asie centrale, vallée de l’Indus) ? Quel est le contexte global de l’âge du Bronze sur le Plateau Iranien ? Comment s’opère l’expansion de la culture Kuro-Araxe à partir du Caucase ? Comment le royaume élamite se met en place ? Quel est l’apport des fouilles et travaux récents dans l’Est iranien ? Quelle est l’influence de la vallée de l’Indus, un centre d’urbanisation important en Asie ? Comment se manifestent les singularités du monde iranien ? Alors que la thématique de l’urbanisation en Mésopotamie a été très débattue ces dernières décennies, cette question est abordée depuis peu pour le Plateau iranien. Le présent volume émane d’une communauté internationale d’archéologues d’institutions iraniennes, européennes et américaines, spécialistes reconnus de l’archéologie iranienne de l’âge du Bronze. Il dresse un panorama de l’état des recherches qui se nourrit amplement des travaux de terrain en cours. L’ouvrage rend compte de la dynamique actuelle de la recherche archéologique en Iran, riche de nouveaux questionnements et de nouvelles perspectives, et constitue un apport original à la réflexion sur l’émergence des villes au Moyen-Orient
Recommended from our members
The state of US health, 1990-2010: burden of diseases, injuries, and risk factors.
ImportanceUnderstanding the major health problems in the United States and how they are changing over time is critical for informing national health policy.ObjectivesTo measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries.DesignWe used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries. Years of life lost due to premature mortality (YLLs) were computed by multiplying the number of deaths at each age by a reference life expectancy at that age. Years lived with disability (YLDs) were calculated by multiplying prevalence (based on systematic reviews) by the disability weight (based on population-based surveys) for each sequela; disability in this study refers to any short- or long-term loss of health. Disability-adjusted life-years (DALYs) were estimated as the sum of YLDs and YLLs. Deaths and DALYs related to risk factors were based on systematic reviews and meta-analyses of exposure data and relative risks for risk-outcome pairs. Healthy life expectancy (HALE) was used to summarize overall population health, accounting for both length of life and levels of ill health experienced at different ages.ResultsUS life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010; during the same period, HALE increased from 65.8 years to 68.1 years. The diseases and injuries with the largest number of YLLs in 2010 were ischemic heart disease, lung cancer, stroke, chronic obstructive pulmonary disease, and road injury. Age-standardized YLL rates increased for Alzheimer disease, drug use disorders, chronic kidney disease, kidney cancer, and falls. The diseases with the largest number of YLDs in 2010 were low back pain, major depressive disorder, other musculoskeletal disorders, neck pain, and anxiety disorders. As the US population has aged, YLDs have comprised a larger share of DALYs than have YLLs. The leading risk factors related to DALYs were dietary risks, tobacco smoking, high body mass index, high blood pressure, high fasting plasma glucose, physical inactivity, and alcohol use. Among 34 OECD countries between 1990 and 2010, the US rank for the age-standardized death rate changed from 18th to 27th, for the age-standardized YLL rate from 23rd to 28th, for the age-standardized YLD rate from 5th to 6th, for life expectancy at birth from 20th to 27th, and for HALE from 14th to 26th.Conclusions and relevanceFrom 1990 to 2010, the United States made substantial progress in improving health. Life expectancy at birth and HALE increased, all-cause death rates at all ages decreased, and age-specific rates of years lived with disability remained stable. However, morbidity and chronic disability now account for nearly half of the US health burden, and improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations
Recommended from our members
The State of US health, 1990-2010: Burden of diseases, injuries, and risk factors
Understanding the major health problems in the United States and how they are changing over time is critical for informing national health policy.
To measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries.
We used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries. Years of life lost due to premature mortality (YLLs) were computed by multiplying the number of deaths at each age by a reference life expectancy at that age. Years lived with disability (YLDs) were calculated by multiplying prevalence (based on systematic reviews) by the disability weight (based on population-based surveys) for each sequela; disability in this study refers to any short- or long-term loss of health. Disability-adjusted life-years (DALYs) were estimated as the sum of YLDs and YLLs. Deaths and DALYs related to risk factors were based on systematic reviews and meta-analyses of exposure data and relative risks for risk-outcome pairs. Healthy life expectancy (HALE) was used to summarize overall population health, accounting for both length of life and levels of ill health experienced at different ages.
US life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010; during the same period, HALE increased from 65.8 years to 68.1 years. The diseases and injuries with the largest number of YLLs in 2010 were ischemic heart disease, lung cancer, stroke, chronic obstructive pulmonary disease, and road injury. Age-standardized YLL rates increased for Alzheimer disease, drug use disorders, chronic kidney disease, kidney cancer, and falls. The diseases with the largest number of YLDs in 2010 were low back pain, major depressive disorder, other musculoskeletal disorders, neck pain, and anxiety disorders. As the US population has aged, YLDs have comprised a larger share of DALYs than have YLLs. The leading risk factors related to DALYs were dietary risks, tobacco smoking, high body mass index, high blood pressure, high fasting plasma glucose, physical inactivity, and alcohol use. Among 34 OECD countries between 1990 and 2010, the US rank for the age-standardized death rate changed from 18th to 27th, for the age-standardized YLL rate from 23rd to 28th, for the age-standardized YLD rate from 5th to 6th, for life expectancy at birth from 20th to 27th, and for HALE from 14th to 26th.
From 1990 to 2010, the United States made substantial progress in improving health. Life expectancy at birth and HALE increased, all-cause death rates at all ages decreased, and age-specific rates of years lived with disability remained stable. However, morbidity and chronic disability now account for nearly half of the US health burden, and improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations