97 research outputs found
Clinical decision support system, a potential solution for diagnostic accuracy improvement in oral squamous cell carcinoma: A systematic review
BACKGROUND AND AIM: Oral squamous cell carcinoma (OSCC) is a rapidly progressive disease and despite the progress in the treatment of cancer, remains a life-threatening illness with a poor prognosis. Diagnostic techniques of the oral cavity are not painful, non-invasive, simple and inexpensive methods. Clinical decision support systems (CDSSs) are the most important diagnostic technologies used to help health professionals to analyze patients’ data and make decisions. This paper, by studying CDSS applications in the process of providing care for the cancer patients, has looked into the CDSS potentials in OSCC diagnosis. METHODS: We retrieved relevant articles indexed in MEDLINE/PubMed database using high-quality keywords. First, the title and then the abstract of the related articles were reviewed in the step of screening. Only research articles which had designed clinical decision support system in different stages of providing care for the cancer patient were retained in this study according to the input criteria. RESULTS: Various studies have been conducted about the important roles of CDSS in health processes related to different types of cancer. According to the aim of studies, we categorized them into several groups including treatment, diagnosis, risk assessment, screening, and survival estimation. CONCLUSION: Successful experiences in the field of CDSS applications in different types of cancer have indicated that machine learning methods have a high potential to manage the data and diagnostic improvement in OSCC intelligently and accurately. KEYWORDS: Squamous Cell Carcinoma; Clinical Decision Support System; Neoplasm; Dental Informatic
Promotion of prehospital emergency care through clinical decision support systems: opportunities and challenges
Clinical decision support systems are interactive computer systems for situational decision making and can improve decision efficiency and safety of care. We investigated the role of these systems in enhancing prehospital care. This narrative review included full-text articles published since 2000 that were available in databases/e-journals including Web of Science, PubMed, Science Direct, and Google Scholar. Search keywords included “clinical decision support system,” “decision support system,” “decision support tools,” “prehospital care,” and “emergency medical services.” Non-journal articles were excluded. We revealed 14 relevant studies that used such a support system in prehospital emergency medical service. Owing to the dynamic nature of emergency situations, decision timing is critical. Four key factors demonstrated the ability of clinical decision support systems to improve decision-making, reduce errors, and improve the safety of prehospital emergency activity: computer-based, offer support as a natural part of the workflow, provide decision support in the time and place of decision making, and offer practical advice. The use of clinical decision support systems in prehospital care resulted in accurate diagnoses, improved patient triage and patient outcomes, and reduction of prehospital time. By improving emergency management and rescue operations, the quality of prehospital care will be enhanced
Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021
Background
Rheumatoid arthritis is a chronic autoimmune inflammatory disease associated with disability and premature death. Up-to-date estimates of the burden of rheumatoid arthritis are required for health-care planning, resource allocation, and prevention. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, we provide updated estimates of the prevalence of rheumatoid arthritis and its associated deaths and disability-adjusted life-years (DALYs) by age, sex, year, and location, with forecasted prevalence to 2050.
Methods
Rheumatoid arthritis prevalence was estimated in 204 countries and territories from 1990 to 2020 using Bayesian meta-regression models and data from population-based studies and medical claims data (98 prevalence and 25 incidence studies). Mortality was estimated from vital registration data with the Cause of Death Ensemble model (CODEm). Years of life lost (YLL) were calculated with use of standard GBD lifetables, and years lived with disability (YLDs) were estimated from prevalence, a meta-analysed distribution of rheumatoid arthritis severity, and disability weights. DALYs were calculated by summing YLLs and YLDs. Smoking was the only risk factor analysed. Rheumatoid arthritis prevalence was forecast to 2050 by logistic regression with Socio-Demographic Index as a predictor, then multiplying by projected population estimates.
Findings
In 2020, an estimated 17·6 million (95% uncertainty interval 15·8–20·3) people had rheumatoid arthritis worldwide. The age-standardised global prevalence rate was 208·8 cases (186·8–241·1) per 100 000 population, representing a 14·1% (12·7–15·4) increase since 1990. Prevalence was higher in females (age-standardised female-to-male prevalence ratio 2·45 [2·40–2·47]). The age-standardised death rate was 0·47 (0·41–0·54) per 100 000 population (38 300 global deaths [33 500–44 000]), a 23·8% (17·5–29·3) decrease from 1990 to 2020. The 2020 DALY count was 3 060 000 (2 320 000–3 860 000), with an age-standardised DALY rate of 36·4 (27·6–45·9) per 100 000 population. YLDs accounted for 76·4% (68·3–81·0) of DALYs. Smoking risk attribution for rheumatoid arthritis DALYs was 7·1% (3·6–10·3). We forecast that 31·7 million (25·8–39·0) individuals will be living with rheumatoid arthritis worldwide by 2050.
Interpretation
Rheumatoid arthritis mortality has decreased globally over the past three decades. Global age-standardised prevalence rate and YLDs have increased over the same period, and the number of cases is projected to continue to increase to the year 2050. Improved access to early diagnosis and treatment of rheumatoid arthritis globally is required to reduce the future burden of the disease.publishedVersio
Global, regional, and national mortality due to unintentional carbon monoxide poisoning, 2000–2021: results from the Global Burden of Disease Study 2021
Background
Unintentional carbon monoxide poisoning is a largely preventable cause of death that has received insufficient attention. We aimed to conduct a comprehensive global analysis of the demographic, temporal, and geographical patterns of fatal unintentional carbon monoxide poisoning from 2000 to 2021.
Methods
As part of the latest Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), unintentional carbon monoxide poisoning mortality was quantified using the GBD cause of death ensemble modelling strategy. Vital registration data and covariates with an epidemiological link to unintentional carbon monoxide poisoning informed the estimates of death counts and mortality rates for all locations, sexes, ages, and years included in the GBD. Years of life lost (YLLs) were estimated by multiplying deaths by remaining standard life expectancy at age of death. Population attributable fractions (PAFs) for unintentional carbon monoxide poisoning deaths due to occupational injuries and high alcohol use were estimated.
Findings
In 2021, the global mortality rate due to unintentional carbon monoxide poisoning was 0·366 per 100 000 (95% uncertainty interval 0·276–0·415), with 28 900 deaths (21 700–32 800) and 1·18 million YLLs (0·886–1·35) across all ages. Nearly 70% of deaths occurred in males (20 100 [15 800–24 000]), and the 50–54-year age group had the largest number of deaths (2210 [1660–2590]). The highest mortality rate was in those aged 85 years or older with 1·96 deaths (1·38–2·32) per 100 000. Eastern Europe had the highest age-standardised mortality rate at 2·12 deaths (1·98–2·30) per 100 000. Globally, there was a 53·5% (46·2–63·7) decrease in the age-standardised mortality rate from 2000 to 2021, although this decline was not uniform across regions. The overall PAFs for occupational injuries and high alcohol use were 13·6% (11·9–16·0) and 3·5% (1·4–6·2), respectively.
Interpretation
Improvements in unintentional carbon monoxide poisoning mortality rates have been inconsistent across regions and over time since 2000. Given that unintentional carbon monoxide poisoning is almost entirely preventable, policy-level interventions that lower the risk of carbon monoxide poisoning events should be prioritised, such as those that increase access to improved heating and cooking devices, reduce carbon monoxide emissions from generators, and mandate use of carbon monoxide alarms.publishedVersio
The global, regional, and national burden of adult lip, oral, and pharyngeal cancer in 204 countries and territories:A systematic analysis for the Global Burden of Disease Study 2019
Importance Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.Objective To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.Evidence Review The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.Findings In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.Conclusions and Relevance In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts
Temporal patterns of cancer burden in Asia, 1990–2019: a systematic examination for the Global Burden of Disease 2019 study
BackgroundCancers represent a challenging public health threat in Asia. This study examines the temporal patterns of incidence, mortality, disability and risk factors of 29 cancers in Asia in the last three decades. MethodsThe age, sex and year-wise estimates of incidence, mortality, and disability-adjusted life years (DALYs) of 29 cancers for 49 Asian countries from 1990 through 2019 were generated as a part of the Global Burden of Disease, Injuries and Risk Factors 2019 study. Besides incidence, mortality and DALYs, we also examined the cancer burden measured in terms of DALYs and deaths attributable to risk factors, which had evidence of causation with different cancers. The development status of countries was measured using the socio-demographic index. Decomposition analysis was performed to gauge the change in cancer incidence between 1990 and 2019 due to population growth, aging and age-specific incidence rates. FindingsAll cancers combined claimed an estimated 5.6 million [95% uncertainty interval, 5.1–6.0 million] lives in Asia with 9.4 million [8.6–10.2 million] incident cases and 144.7 million [132.7–156.5 million] DALYs in 2019. The age-standardized incidence rate (ASIR) of all cancers combined in Asia was 197.6/100,000 [181.0–214.4] in 2019, varying from 99.2/100,000 [76.1–126.0] in Bangladesh to 330.5/100,000 [298.5–365.8] in Cyprus. The age-standardized mortality rate (ASMR) was 120.6/100,000 [110.1–130.7] in 2019, varying 4-folds across countries from 71.0/100,000 [59.9–83.5] in Kuwait to 284.2/100,000 [229.2–352.3] in Mongolia. The age-standardized DALYs rate was 2970.5/100,000 [2722.6–3206.5] in 2019, varying from 1578.0/100,000 [1341.2–1847.0] in Kuwait to 6574.4/100,000 [5141.7–8333.0] in Mongolia. Between 1990 and 2019, deaths due to 17 of the 29 cancers either doubled or more, and 20 of the 29 cancers underwent an increase of 150% or more in terms of new cases. Tracheal, bronchus, and lung cancer (both sexes), breast cancer (among females), colon and rectum cancer (both sexes), stomach cancer (both sexes) and prostate cancer (among males) were among top-5 cancers in most Asian countries in terms of ASIR and ASMR in 2019 and cancers of liver, stomach, hodgkin lymphoma and esophageal cancer posted the most significant decreases in age-standardized rates between 1990 and 2019. Among the modifiable risk factors, smoking, alcohol use, ambient particulate matter (PM) pollution and unsafe sex remained the dominant risk factors between 1990 and 2019. Cancer DALYs due to ambient PM pollution, high body mass index and fasting plasma glucose has increased most notably between 1990 and 2019. InterpretationWith growing incidence, cancer has become more significant public health threat in Asia, demanding urgent policy attention and guidance. Its heightened risk calls for increased cancer awareness, preventive measures, affordable early-stage detection, and cost-effective therapeutics in Asia. The current study can serve as a useful resource for policymakers and researchers in Asia for devising interventions for cancer management and control. FundingThe GBD study is funded by the Bill and Melinda Gates Foundation.This work is supported by:
- University Grants Commission
- Chandigarh University
- National Science and Technology Council - grant no. [112-2410-H-003-031]
- Bill and Melinda Gates Foundation - grant no. [OPP1152504]
- Fundamental Research Funds for the Central Universities - grant no. [30923011101]
- Social Science Foundation of Jiangsu Province - grant no. [21GLD008]
- National Natural Science Foundation of China - grant no. [72204112
Global pattern, trend, and cross-country inequality of early musculoskeletal disorders from 1990 to 2019, with projection from 2020 to 2050
BackgroundThis study aims to estimate the burden, trends, forecasts, and disparities of early musculoskeletal (MSK) disorders among individuals ages 15 to 39 years. MethodsThe global prevalence, years lived with disabilities (YLDs), disability-adjusted life years (DALYs), projection, and inequality were estimated for early MSK diseases, including rheumatoid arthritis (RA), osteoarthritis (OA), low back pain (LBP), neck pain (NP), gout, and other MSK diseases (OMSKDs). FindingsMore adolescents and young adults were expected to develop MSK disorders by 2050. Across five age groups, the rates of prevalence, YLDs, and DALYs for RA, NP, LBP, gout, and OMSKDs sharply increased from ages 15–19 to 35–39; however, these were negligible for OA before age 30 but increased notably at ages 30–34, rising at least 6-fold by 35–39. The disease burden of gout, LBP, and OA attributable to high BMI and gout attributable to kidney dysfunction increased, while the contribution of smoking to LBP and RA and occupational ergonomic factors to LBP decreased. Between 1990 and 2019, the slope index of inequality increased for six MSK disorders, and the relative concentration index increased for gout, NP, OA, and OMSKDs but decreased for LBP and RA. ConclusionsMultilevel interventions should be initiated to prevent disease burden related to RA, NP, LBP, gout, and OMSKDs among individuals ages 15–19 and to OA among individuals ages 30–34 to tightly control high BMI and kidney dysfunction. FundingThe Global Burden of Disease study is funded by the Bill and Melinda Gates Foundation. The project is funded by the Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (2022QN38).This study was produced as part of the GBD Collaborator Network and in accordance with the GBD Protocol (IHME ID: 4241-GBD2019). For GBD studies, a waiver of informed consent was reviewed and approved by the Institutional Review Board of the University of Washington. The Global Burden of Disease study is funded by the Bill and Melinda Gates Foundation. The project is funded by the Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (2022QN38). Y.J. and C.G. were joint first authors who contributed equally to the manuscript. L.-s.T. and D.W. were joint senior authors. Y.J., C.G., L.-s.T., and D.W. were writing authors of the manuscript
Global age-sex-specific all-cause mortality and life expectancy estimates for 204 countries and territories and 660 subnational locations, 1950–2023: a demographic analysis for the Global Burden of Disease Study 2023
Background:
Comprehensive, comparable, and timely estimates of demographic metrics—including life expectancy and age-specific mortality—are essential for evaluating, understanding, and addressing trends in population health. The COVID-19 pandemic highlighted the importance of timely and all-cause mortality estimates for being able to respond to changing trends in health outcomes, showing a strong need for demographic analysis tools that can produce all-cause mortality estimates more rapidly with more readily available all-age vital registration (VR) data. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is an ongoing research effort that quantifies human health by estimating a range of epidemiological quantities of interest across time, age, sex, location, cause, and risk. This study—part of the latest GBD release, GBD 2023—aims to provide new and updated estimates of all-cause mortality and life expectancy for 1950 to 2023 using a novel statistical model that accounts for complex correlation structures in demographic data across age and time.
Methods:
We used 24 025 data sources from VR, sample registration, surveys, censuses, and other sources to estimate all-cause mortality for males, females, and all sexes combined across 25 age groups in 204 countries and territories as well as 660 subnational units in 20 countries and territories, for the years 1950–2023. For the first time, we used complete birth history data for ages 5–14 years, age-specific sibling history data for ages 15–49 years, and age-specific mortality data from Health and Demographic Surveillance Systems. We developed a single statistical model that incorporates both parametric and non-parametric methods, referred to as OneMod, to produce estimates of all-cause mortality for each age-sex-location group. OneMod includes two main steps: a detailed regression analysis with a generalised linear modelling tool that accounts for age-specific covariate effects such as the Socio-demographic Index (SDI) and a population attributable fraction (PAF) for all risk factors combined; and a non-parametric analysis of residuals using a multivariate kernel regression model that smooths across age and time to adaptably follow trends in the data without overfitting. We calibrated asymptotic uncertainty estimates using Pearson residuals to produce 95% uncertainty intervals (UIs) and corresponding 1000 draws. Life expectancy was calculated from age-specific mortality rates with standard demographic methods. For each measure, 95% UIs were calculated with the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings:
In 2023, 60·1 million (95% UI 59·0–61·1) deaths occurred globally, of which 4·67 million (4·59–4·75) were in children younger than 5 years. Due to considerable population growth and ageing since 1950, the number of annual deaths globally increased by 35·2% (32·2–38·4) over the 1950–2023 study period, during which the global age-standardised all-cause mortality rate declined by 66·6% (65·8–67·3). Trends in age-specific mortality rates between 2011 and 2023 varied by age group and location, with the largest decline in under-5 mortality occurring in east Asia (67·7% decrease); the largest increases in mortality for those aged 5–14 years, 25–29 years, and 30–39 years occurring in high-income North America (11·5%, 31·7%, and 49·9%, respectively); and the largest increases in mortality for those aged 15–19 years and 20–24 years occurring in Eastern Europe (53·9% and 40·1%, respectively). We also identified higher than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 5–14 years (87·3% higher in GBD 2023 than GBD 2021 on average across countries and territories over the 1950–2021 period) and for females aged 15–29 years (61·2% higher), as well as lower than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 50 years and older (13·2% lower), reflecting advances in our modelling approach. Global life expectancy followed three distinct trends over the study period. First, between 1950 and 2019, there were considerable improvements, from 51·2 (50·6–51·7) years for females and 47·9 (47·4–48·4) years for males in 1950 to 76·3 (76·2–76·4) years for females and 71·4 (71·3–71·5) years for males in 2019. Second, this period was followed by a decrease in life expectancy during the COVID-19 pandemic, to 74·7 (74·6–74·8) years for females and 69·3 (69·2–69·4) years for males in 2021. Finally, the world experienced a period of post-pandemic recovery in 2022 and 2023, wherein life expectancy generally returned to pre-pandemic (2019) levels in 2023 (76·3 [76·0–76·6] years for females and 71·5 [71·2–71·8] years for males). 194 (95·1%) of 204 countries and territories experienced at least partial post-pandemic recovery in age-standardised mortality rates by 2023, with 61·8% (126 of 204) recovering to or falling below pre-pandemic levels. There were several mortality trajectories during and following the pandemic across countries and territories. Long-term mortality trends also varied considerably between age groups and locations, demonstrating the diverse landscape of health outcomes globally.
Interpretation:
This analysis identified several key differences in mortality trends from previous estimates, including higher rates of adolescent mortality, higher rates of young adult mortality in females, and lower rates of mortality in older age groups in much of sub-Saharan Africa. The findings also highlight stark differences across countries and territories in the timing and scale of changes in all-cause mortality trends during and following the COVID-19 pandemic (2020–23). Our estimates of evolving trends in mortality and life expectancy across locations, ages, sexes, and SDI levels in recent years as well as over the entire 1950–2023 study period provide crucial information for governments, policy makers, and the public to ensure that health-care systems, economies, and societies are prepared to address the world's health needs, particularly in populations with higher rates of mortality than previously known. The estimates from this study provide a robust framework for GBD and a valuable foundation for policy development, implementation, and evaluation around the world
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
- …
