190 research outputs found

    Using XML and XSLT for flexible elicitation of mental-health risk knowledge

    Get PDF
    Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Methods and evolving results: Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Conclusions: Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge

    On-microscope staging of live cells reveals changes in the dynamics of transcriptional bursting during differentiation

    Get PDF
    Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using an on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in transcriptional activity whereas at the peak of gene expression, in early erythroblasts, transcription is relatively stable. Later during differentiation as α-globin expression declines, we again observe more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of active transcriptional compartments as gene expression is regulated during differentiation

    On the security of consumer wearable devices in the Internet of Things

    Get PDF
    Miniaturization of computer hardware and the demand for network capable devices has resulted in the emergence of a new class of technology called wearable computing. Wearable devices have many purposes like lifestyle support, health monitoring, fitness monitoring, entertainment, industrial uses, and gaming. Wearable devices are hurriedly being marketed in an attempt to capture an emerging market. Owing to this, some devices do not adequately address the need for security. To enable virtualization and connectivity wearable devices sense and transmit data, therefore it is essential that the device, its data and the user are protected. In this paper the use of novel Integrated Circuit Metric (ICMetric) technology for the provision of security in wearable devices has been suggested. ICMetric technology uses the features of a device to generate an identification which is then used for the provision of cryptographic services. This paper explores how a device ICMetric can be generated by using the accelerometer and gyroscope sensor. Since wearable devices often operate in a group setting the work also focuses on generating a group identification which is then used to deliver services like authentication, confidentiality, secure admission and symmetric key generation. Experiment and simulation results prove that the scheme offers high levels of security without compromising on resource demands

    EXPLICIT: a feasibility study of remote expert elicitation in health technology assessment

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this recordBACKGROUND: Expert opinion is often sought to complement available information needed to inform model-based economic evaluations in health technology assessments. In this context, we define expert elicitation as the process of encoding expert opinion on a quantity of interest, together with associated uncertainty, as a probability distribution. When availability for face-to-face expert elicitation with a facilitator is limited, elicitation can be conducted remotely, overcoming challenges of finding an appropriate time to meet the expert and allowing access to experts situated too far away for practical face-to-face sessions. However, distance elicitation is associated with reduced response rates and limited assistance for the expert during the elicitation session. The aim of this study was to inform the development of a remote elicitation tool by exploring the influence of mode of elicitation on elicited beliefs. METHODS: An Excel-based tool (EXPLICIT) was developed to assist the elicitation session, including the preparation of the expert and recording of their responses. General practitioners (GPs) were invited to provide expert opinion about population alcohol consumption behaviours. They were randomised to complete the elicitation by either a face-to-face meeting or email. EXPLICIT was used in the elicitation sessions for both arms. RESULTS: Fifteen GPs completed the elicitation session. Those conducted by email were longer than the face-to-face sessions (13 min 30 s vs 10 min 26 s, p = 0.1) and the email-elicited estimates contained less uncertainty. However, the resulting aggregated distributions were comparable. CONCLUSIONS: EXPLICIT was useful in both facilitating the elicitation task and in obtaining expert opinion from experts via email. The findings support the opinion that remote, self-administered elicitation is a viable approach within the constraints of HTA to inform policy making, although poor response rates may be observed and additional time for individual sessions may be required.This paper presents independent research funded by the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula

    Nanoscale potassium niobate crystal structure and phase transition

    Get PDF
    Nanoscale potassium niobate (KNbO3) powders of orthorhombic structure were synthesized using the sol-gel method. The heat-treatment temperature of the gels had a pronounced effect on KNbO3 particle size and morphology. Field emission scanning electron microscopy and transmission electron microscopy were used to determine particle size and morphology. The average KNbO3 grain size was estimated to be less than 100 nm, and transmission electron microscopy images indicated that KNbO3 particles had a brick-like morphology. Synchrotron X-ray diffraction was used to identify the room-temperature structures using Rietveld refinement. The ferroelectric orthorhombic phase was retained even for particles smaller than 50 nm. The orthorhombic to tetragonal and tetragonal to cubic phase transitions of nanocrystalline KNbO3 were investigated using temperature-dependent powder X-ray diffraction. Differential scanning calorimetry was used to examine the temperature dependence of KNbO3 phase transition. The Curie temperature and phase transition were independent of particle size, and Rietveld analyses showed increasing distortions with decreasing particle size

    Applying Bayesian model averaging for uncertainty estimation of input data in energy modelling

    Get PDF
    Background Energy scenarios that are used for policy advice have ecological and social impact on society. Policy measures that are based on modelling exercises may lead to far reaching financial and ecological consequences. The purpose of this study is to raise awareness that energy modelling results are accompanied with uncertainties that should be addressed explicitly. Methods With view to existing approaches of uncertainty assessment in energy economics and climate science, relevant requirements for an uncertainty assessment are defined. An uncertainty assessment should be explicit, independent of the assessor’s expertise, applicable to different models, including subjective quantitative and statistical quantitative aspects, intuitively understandable and be reproducible. Bayesian model averaging for input variables of energy models is discussed as method that satisfies these requirements. A definition of uncertainty based on posterior model probabilities of input variables to energy models is presented. Results The main findings are that (1) expert elicitation as predominant assessment method does not satisfy all requirements, (2) Bayesian model averaging for input variable modelling meets the requirements and allows evaluating a vast amount of potentially relevant influences on input variables and (3) posterior model probabilities of input variable models can be translated in uncertainty associated with the input variable. Conclusions An uncertainty assessment of energy scenarios is relevant if policy measures are (partially) based on modelling exercises. Potential implications of these findings include that energy scenarios could be associated with uncertainty that is presently neither assessed explicitly nor communicated adequately
    corecore