
Culka Energy, Sustainability and Society 2014, 4:21
http://www.energsustainsoc.com/content/4/1/21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
ORIGINAL ARTICLE Open Access
Applying Bayesian model averaging for uncertainty
estimation of input data in energy modelling
Monika Culka
Abstract

Background: Energy scenarios that are used for policy advice have ecological and social impact on society. Policy
measures that are based on modelling exercises may lead to far reaching financial and ecological consequences.
The purpose of this study is to raise awareness that energy modelling results are accompanied with uncertainties
that should be addressed explicitly.

Methods: With view to existing approaches of uncertainty assessment in energy economics and climate science,
relevant requirements for an uncertainty assessment are defined. An uncertainty assessment should be explicit,
independent of the assessor’s expertise, applicable to different models, including subjective quantitative and
statistical quantitative aspects, intuitively understandable and be reproducible. Bayesian model averaging for input
variables of energy models is discussed as method that satisfies these requirements. A definition of uncertainty
based on posterior model probabilities of input variables to energy models is presented.

Results: The main findings are that (1) expert elicitation as predominant assessment method does not satisfy all
requirements, (2) Bayesian model averaging for input variable modelling meets the requirements and allows
evaluating a vast amount of potentially relevant influences on input variables and (3) posterior model probabilities
of input variable models can be translated in uncertainty associated with the input variable.

Conclusions: An uncertainty assessment of energy scenarios is relevant if policy measures are (partially) based on
modelling exercises. Potential implications of these findings include that energy scenarios could be associated with
uncertainty that is presently neither assessed explicitly nor communicated adequately.

Keywords: Uncertainty; Energy modelling; Assessment methods; Bayesian model averaging
Background
Energy scenarios are quantitative or qualitative output from
mathematic modelsa of the energy system, or, systematic,
consistent thinking in qualitative terms about the energy
system. Quantitative energy models can be classified as
top-down models, typically macro-economic models with
focus on energy economics and bottom-up models, typic-
ally technology oriented process-based models. Different
mathematical descriptions of the target system are possible,
such as general equilibrium models (e.g. E3ME [1]), linear
programs (e.g. TIMES [2]), stochastic models (e.g. [3], espe-
cially [4]) or mixed complementary problems (e.g. [5]). If
an energy model has an objective function to be minimised
or maximised, it is an optimisation model. Opposed to
these, simulation models simulate consequences over time
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of key assumptions. Frequently used terms in that context
are business as usual scenario or reference scenario. An
energy scenario can describe both, key assumptions about
relevant input variables in energy economics, and the result
of a model run, the model output. In this text, the term
energy scenario refers to the results of quantitative models.
Amongst the most important input variables, also called
key assumptions or assumption framework, are for example
shares of specific electricity generation capacities, popula-
tion growth assumptions, fuel price assumptions or gross
domestic product assumptions. These key assumptions
can be varied to produce alternative scenarios that can
be assessed quantitatively by means of energy models
or qualitatively in different storylines. The choice which
key assumptions are considered in a study strongly
depends on the aim of the research and is often coupled
to specific questions regarding energy futures or political
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considerations cf. [6,7]. One of the main aims of such
energy scenarios are statements about the future, be it
possible, probable, normative or deterministic statements.
These statements may serve for political advice, or are the
basis for (energy-) political decision making. Examples
to illustrate this function are the Energiekonzept der
Bundesregierung [8] in Germany that is - at least inspired -
by a modelling exercise, or, on a European level, the Energy
Roadmap 2050 [9] that refers to a modelling exercise,
detailed in part 2/2 of their publication.
The scenario report for the Energiekonzept introduces

its findings with a clarification on what energy scenarios,
as described in the report, are meant to be: ‘Scenarios
describe possible futures. They do not claim to represent
the most likely development from today’s perspective.
[…] Depending on the definition of relevant parameters
(‘Eckpunkte’), next to the derived scenarios, many other
pathways in the future of the German energy supply are
possible that are not under scrutiny in this work’ [10].
So, what discerns such a possibilistic statement (an

energy scenario) from any other possibilistic energy
scenario that, admittedly, may serve the same purpose
of fulfilling the German energy supply? And if there is
no difference, of what profit is the modelling exercise
altogether? One answer can be found in the document,
the developed target scenarios comprise consistent path-
ways of long-term energy economic developments [10].
The question arises, what consistent in this context

means. Consistent with expectations about the future,
consistent with past evidence, consistent with the math-
ematical model framework or consistent in a rather
abstract sense that there are no contradictions in the
energy scenarios. However interpreted, the question
remains, what additional value, with respect to any
other possible pathway, does a model-based pathway
into the German energy future provide? Consistency,
in the broadest sense could be understood in and by
itself as possibility; for, if a statement is self-contradictory,
it is not possible. Hence, consistency is no unique charac-
teristic of possible model-based statements. However, it
is possible that some energy scenarios are not even
consistent in a non-contradictory sense. Weimer-Jehle
has developed a systematic approach to ensure that as-
sumption preselection and associated effects on society,
economy and environment are consistent and evaluated
in a transparent way [11]. If such a transparent approach
in the phase of key assumption selection or scenario con-
struction is not provided, it remains at least questionable,
if energy scenarios are not self-contradictory.
An added value could be derived, if model-based energy

scenarios were contrasted to other possible scenarios,
particularly, if an uncertainty assessment was carried
out for the energy scenario. In the case of a quantitative
uncertainty assessment, the possibility of comparing
different scenarios with respect to their adherent uncer-
tainty could indicate to what extent and in what respect
the scenario can be discerned from other scenarios. An
energy scenario that is possible begs the question how
possible it is, given key assumptions about the future. The
question is thus, how uncertain is an energy scenario?
The main objective of this text is a discussion which

requirements an uncertainty assessment should fulfil. Based
on these requirements, a method, Bayesian model aver-
aging (BMA) is debated as possible candidate to satisfy
them. The main arguments are that an energy modelling
exercise that is enriched with an uncertainty assessment
which satisfies the requirements is (1) comprehensible in
terms of its associated uncertainty and (2) should contrib-
ute to a complete understanding of energy scenarios, espe-
cially if they are used in decision support.
Uncertainties in energy scenarios can have different

sources and can be of different kinds. Walker et al. have
presented a concise summary of existent uncertainty of
model-based energy scenarios, based on the location,
level and nature of the uncertainty [12]. According to
them, generic locations can be context, model uncertainty,
inputs, parameter and outcome. The uncertainty estimation
method discussed in this text, BMA for input variables to
energy models, can assess uncertainty in the location input
and parameter uncertainty, and, to an extent, context
uncertainty that concerns the modelled boundaries of the
system. The presented method does not aim to evaluate
error propagation within a specific energy model. Walker
describes the level of uncertainty in terms of determinism,
statistical uncertainty, scenario uncertainty, recognised
ignorance and indeterminacy, i.e. total ignorance. BMA
for input variables to energy models represents uncer-
tainty based on probabilistic assessment and hence can
also range from certainty to total ignorance. However, the
use of statistical data renders the assessment itself prone
to statistical uncertainty. Finally, Walker et al. describe the
nature of uncertainty as epistemic uncertainty or variabil-
ity where epistemic uncertainty is due to the imperfection
of our knowledge and variability refers to inherent vari-
ability, especially present in human and natural systems.
The BMA approach can evaluate both natures of uncer-
tainty in statistical terms. If input variables to energy
models are exposed to variability, data fit of model results
with respect to statistical data will indicate that exposure.
Uncertainty due to variability can also be addressed by

stochastic modelling. A stochastic modelling approach
aims to represent (natural) variability within the model,
e.g. [13,14]. Such uncertainty analyses are mainly applicable
in physical systems. Energy models that also represent
economic, political, environmental and social aspects of
an energy system regard the system from a broader per-
spective. However, stochastic uncertainty assessments
could be beneficial for (parts of ) energy models that are
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exposed to variability such as electricity generation
modelling based on wind or solar cf. [15,16]. Epistemic
uncertainty is less naturally defined in a probabilistic
framework, and hence, one of the objectives of uncer-
tainty quantification is the reformulation of epistemic
uncertainty as variability [17]. If epistemic uncertainty
is contained in the energy model, the model results are
likely to be more uncertain than the input variables.
The BMA approach accounts for that by establishing a
lower bound of uncertainty.
Recent evaluations have investigated the nature of

energy scenarios and their limitations in terms of legit-
imate inference from model output [6]. In contrast to a
vivid discussion of model quality and legitimate infer-
ence, as can be observed in climate modelling [18-21],
energy models have not invoked a similar discussion.
Whilst climate modelling developed a framework for
the treatment and communication of uncertainties [22-24],
energy models and resulting scenarios lack such a system-
atic approach for uncertainty qualification (or quantifica-
tion). However, investigating uncertainties in models is
necessary for quality assessment of model results and
reliability of results, especially if such results figure in
policy advice.
The next chapter will investigate existing uncertainty

assessments in energy modelling and focus on the strengths
and weaknesses of those. From these considerations, gen-
eral requirements that an uncertainty assessment for energy
modelling should satisfy are retrieved. In the following sec-
tion, presently applied methods for uncertainty evaluation
are discussed, including expert elicitation, robustness ana-
lysis, model fit, variety of evidence and standard statistical
analysis. As research regarding uncertainty evaluation for
energy models is not yet as advanced as for example in cli-
mate science, a substantial part of discussion is based on
examples of other disciplines, especially climate science.
The next two sections firstly address critique on Bayesian
approaches and present the uncertainty assessment based
on BMA for input variables of energy models. The last sec-
tion summarises results and discusses the method critically.

Existing uncertainty assessments in energy modelling
Data of already existing publications are compared with
the results of this work, such that an evaluation of exist-
ing approaches to uncertainty assessment in the context
of energy economics is examined on the basis of two
examples.
Walker et al. [12] have investigated energy model-related

uncertainties with respect to their nature and occurrence.
Their definition of uncertainty being ‘any departure from
the unachievable ideal of complete determinism’, allows for
a conceptual investigation of all relevant uncertainties, by
defined categories, reaching from determinism to total ig-
norance. The provided tool, an uncertainty matrix, should
be used to identify model outcome uncertainty according
to their level and nature. It is not clear in what terms the
matrix should be evaluated, yes/no, much/little, or, in a
numeric scale that is not provided. This approach allows
for an illustrative representation of uncertainties involved
in modelling. However, the method seems to end with a
delicate categorization rather than with a valuable assess-
ment. Indeed, awareness of the location, level and nature
of uncertainty is important information; nonetheless, the
method does not provide insight into how the uncertainty
should be assessed or into what way uncertainty of, for
example, recognised ignorance in the location model
structure bears on the uncertainty of model outcomes.
The second example of an assessment is the numeral

unit spread assessment pedigree (NUSAP) method to
assess qualitative and quantitative uncertainties in the
targets image energy model regional (TIMER) energy
model, part of RIVMs IMAGE model [25]. Firstly, by
means of a comprehensive checklist for model quality
assurance, key loci and sorts of uncertainties in the
TIMER modelling process are identified. Model struc-
ture uncertainties were analysed by a meta-analysis of
similarities and differences of six energy models. A
sensitivity analysis for model parameters in terms of
magnitude of influence has been carried out. A NUSAP
expert elicitation workshop has systematically assessed
those parameters in the following dimensions: proxy, em-
pirical basis, theoretical understanding, methodological
rigour and validation. And finally, a diagnostic diagram is
produced [25].
This evaluation provides interesting insight in the

TIMER model, the uncertainties associated with the
modelling process and the model results. However,
there is some critique that relates to the applicability
and required expert knowledge for such an assessment.
Firstly, the method is rather model-specific. Secondly,
the method relies mainly on expert elicitation for both
experts in modelling and energy economics. Experts in
modelling are likely to be experts for especially the
model they work with. Large and complex models tend
to require long periods of vocational adjustment before
a model is fully understood. And due to intellectual
property considerations, some models cannot be assessed
by ‘foreign’ modellers. Another critical remark considers
the output of the assessment. The diagnostic diagram, as
presented in section 6.8 of document [25], is difficult
to understand. The diagnostic diagram is based on the
results of expert elicitation.
Three groups have evaluated the same parameter, e.g.

N° 8a learning rates for nuclear. For a discussion of an
expert elicitation on future costs of nuclear, Rai provides
interesting insight [26]. The resulted diagram of the
expert elicitation is illustrated in Figures 1, 2 and 3b [25].
The figures show a kite chart that consist of six spokes



Figure 1 NUSAP kite diagram for learning rates: a. Nuclear of
group A.

Figure 3 NUSAP kite diagram for learning rates: a. Nuclear of
group C.
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representing the dimensions of evaluation, namely, valid-
ation, method, theory, empirical, proxy and inverse laden
value. The green kite is spanned up by the minimum
scores in each group for each pedigree criterion; the
orange kite is spanned up by the maximum scores. The
orange band between the green kite and the red area
represents expert disagreement on the pedigree scores
for that variable. In some cases, the picture was strongly
influenced by a single deviating low score given by one
of the six experts. In those cases, the light green kite
Figure 2 NUSAP kite diagram for learning rates: a. Nuclear of
group B.
shows what the green kite would look like if that outlier
would have been omitted. The 0 is in the center of the
diagram and the 4 is on each corner. Note that, the
scores for value ladenness have been inverted compared
to what was filled in on the cards: a 4 on card was
entered as a 0 in the diagram and a 0 on the card as a 4
in the diagram.
These three evaluations all represent the uncertainty as-

sociated with the learning rates of nuclear power produc-
tion. There are several interpretations possible: either, the
dissent in the expert groups indicates that the experts do
not dispose of deep understanding of the questionc.
Or, one expert group is correct and the others are

wrong. Or, the limited number of experts does not allow
for the results to converge to an unambiguous assessment
result. Or, the strong dissent indicates that uncertainty is
high. This last reading is not without further ado more
justified than any of the other readings. Yet, it is the only
one that actually assesses the uncertainty of the parameter
in question. This example illustrates the necessity of an
inter-subjective requirement in an assessment method. An
inter-subjective assessment method would render the
result of an uncertainty assessment less dependent on
the specific individuals that carry out the analysis. If an
assessment is based on expert elicitation and possible
interpretations of dissent (and consent) are not explicit,
the method itself contributes to uncertainty. For then,
the uncertainty of the assessment method itself and the
uncertainty of the model assessed are present, and it
can be difficult to cleave them apart. It is necessary to
stress that expert elicitation is an important tool. However,
due to practical limitationsd, issues of the method in and
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by itself, such as convergence in findings and trustworthi-
ness of findings, need to be addressed and evaluated.
Based on these examples and general desirables for

an uncertainty assessment, a list of requirements of an
uncertainty assessment for energy scenarios can be formu-
lated. The six following requirements are not exhaustive;
other possibly relevant virtues could be imagined as
requirements for uncertainty quantification are context
dependent. The presented aspects are inspired by existing
approaches and desirables with respect to methodology
and practical aspects in energy economics and climate
science. An uncertainty assessment should

1) give a clear indication how reliable the findings are
(uncertainty assessment)

2) be applicable independent of assessor’s expertise
(inter-subjectivity)

3) be applicable to different models (comparability of
results)

4) incorporate qualitative and quantitative aspects
(complete representation)

5) be intuitively understandable and straightforward to
communicate (scale requirements)

6) be reproducible and unambiguous.

A clear indication of the reliability of findings (require-
ment 1) can be achieved by quantitative methods rather
than qualitative methods. Classical uncertainty quantifi-
cation methods include, but are not limited to, both
Frequentist and Bayesian statistical analysis, stochastic
models, sensitivity analysis, or Monte Carlo methods
[17,27]. Which quantification method is used strongly
depends on the target system under scrutiny, the model
representation of that system and the aspired precise-
ness of the uncertainty quantification. Inter-subjectivity
(requirement 2) can be interpreted as a maximisation
of objectiveness in the assessment process. However,
the incorporation of both quantitative and qualitative
aspects (requirement 4), does implicitly demand subjective
characteristics, for qualitative assessment methods demand
subjective evaluation and understanding. The requirement
of intuitive comprehensibility (requirement 5) should
allow the recipient of such assessments an interpret-
ation without tedious lecture of explanatory notes. And
finally, reproducibility and unambiguousness (requirement
6) should minimise misunderstandings and increase confi-
dence in the evaluation by the recipiente. The expected
scientific progress by the proposed BMA method of un-
certainty assessment in the context of energy economics
can be summarised as follows

� The assessment method does not solely rely on
expert elicitation, although valuable subjective
expert knowledge can be included.
� BMA could provide a versatile tool for the
assessment of complex interrelated statistical data.

� Requirements that should be satisfied by an
uncertainty measurement method are met.

An explicit uncertainty assessment of energy scenarios
that satisfies these requirements would increase trans-
parency of assumption uncertainty and thus model results.
The aims of the text are to present a methodology, BMA
for input variables of energy models, that satisfies these
requirements and to infer quantitative uncertainty estima-
tions from input parameters to energy models. Recipients
of energy scenarios could gain a better understanding
regarding the uncertainty of model results (i.e. energy
scenarios) what might impact their function as decision
support or basis for decision, especially if energy scenarios
are used for policy advice, leading to far reaching eco-
logical, financial and societal consequences.
Methods
Quantitative methods versus qualitative methods for
uncertainty assessments
In the quest of an appropriate uncertainty assessment for
energy scenarios, climate science may provide a suitable
starting point as the uncertainty assessment discussion
in climate sciences is more advanced than in energy
economics.
The Intergovernmental Panel on Climate Change (IPCC)

has developed over years guidelines for a consistent treat-
ment of uncertainties associated with climate modelling
results. For the current report, the fifth assessment report,
the published guidelines incorporate many of former critics
on the initial uncertainty assessments and critically analyses
uncertainty assessments of earlier reports [28]. The guide-
lines of the assessment report 5 (AR5) specify two metrics
for the communication of the degree of certainty in key
findings:

� Confidence in the validity of a finding, based on the
type, amount, quality and consistency of evidence
(e.g. mechanistic understanding, theory, data,
models, expert judgement) and the degree of
agreement. Confidence is expressed qualitatively.

� Quantified measures of uncertainty in a finding
expressed probabilistically (based on statistical
analysis of observations or model results, or expert
judgement) [23].

By means of a confidence matrix, a likelihood scale
(expressed as probabilities) and probability distribution
functions, the three working groups of the AR5 are to
evaluate uncertainties associated with their findings. The
likelihood scale for (subjective) quantitative assessment
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of uncertainty is recommended to be applied only in
cases with high or very high confidence [29]f.
The IPCC uncertainty assessment thus relies on both,

qualitative and quantitative ways to describe reliability
of findings. Apparently, if quantitative assessments are
applicable, they should be used preferable to qualitative
assessment. Qualitative uncertainty assessment is applied
in cases of deep uncertaintyg, where uncertainty cannot
be quantified. Qualitative uncertainty assessment faces
several challenges. The problem of linguistic ambiguity
seems to be the predominant problem when uncertainty
is qualitatively assessed. In the guidance, note the level
of confidence is defined using five qualifiers: very low,
low, medium, high and very high [23]. It synthesises the
author teams’ judgments about the validity of findings as
determined through evaluation of evidence and agree-
ment. It is arguable if there is a common understanding
of such categories amongst individuals and hence, the
question arises, whether the evaluation of agreement
actually depicts the uncertainty of the finding in question
or rather the ambiguity in understanding of the term used.
Also, there is no clear indication how much agreement is
necessary for the affiliation to a certain categoryh. And,
finally, it is unclear in which way agreement can be
associated with high confidence and in turn with uncer-
tainty (judgments about the validity of findings). One
interpretation could be that high confidence (inter alia
based on high agreement) means low uncertainty; how-
ever, this could not hold true in cases where agreement
is high that the level of uncertainty is high for a finding
(e.g. due to the stochastic nature of a process). More-
over, this reading also faces the criticism that it is
thinkable that even with high agreement, the finding is
not at all certain, and all assessors could collectively be
wrong in their valuation. The other reading, that high
confidence means high uncertainty, next to being counter-
intuitive, does not reflect that agreement sometimes does
give an indication for the truth of a finding.
Qualitative assessment methods, even if normalised to

summary terms (IPCC) seem to intrinsically depend on
not only a subjective comprehension of summary terms
but also subjective opinion of the assessor. This can be
advantageous or disadvantageous, depending on the expert-
ise of the assessor and the communication of relevant infor-
mation that influenced the assessment. In any case, such
assessment methods lack the important property of gener-
ating reproducible assessments. If a different group of
experts assessed the results, the uncertainty assessment of a
specific finding might turn out to be significantly different,
even if a sound reasoning underpins the assessment. As
Krueger et al. point out, expert opinion in modelling will
benefit from formal, systematic and transparent procedures
[30]. Inter-subjective reproducibility is a necessity if a find-
ing is called robust. A qualitative assessment is likely to be
not as efficient in evaluating robustness as a quantitative,
standardised assessment, given the problem of linguistic
ambiguity and subjectivity of the assessment method. A
quantitative approach that uses a method that can be
standardised and applied independent of the expertise of
the assessor would presumably yield higher agreement.
However, qualitative uncertainty assessments have the

important benefit of putting findings into perspective of
the state of art of modelling and the present knowledge
about processes and/or assumptions. If a finding is based
on limited knowledge, it cannot represent a certain
statement and has to be supplemented with information
regarding the validity of findings.
Quantitative assessment methods often face the critique

of being perceived with more precision than justified
[31,32], especially [33] when he discusses Nowotny’s per-
spective. This could be the case where probability density
functions (pdfs) can be produced but are themselves based
on uncertain input. In such cases, communication (quali-
tatively or quantitatively) of the uncertainty related to the
pdfs is necessary. An advantage of quantitative methods is
an unambiguous representation. The intuitive understand-
ing, even in the simplest form, for example, a scale from
one to ten, ten representing high uncertainty, might allow
the recipient of such an assessment a clear understanding.
This is, indeed, not unproblematic. For one, there is an
intrinsic assumption that must be clarified if not true,
which is that the scale units are uniform in sizei or a
logarithmic scale. Even more intuitively understandable
appears to be a probabilistic statement. However, re-
garding the perception of probabilistic uncertainty
assessments, Patt et al. report that changes of equal
magnitude in assessed probabilities can have different
effects in decision-making experiments. For example, a
change of 10 percentage points from 90% to 100% impacts
choices of test persons differently than a change from 50%
to 60% [34]. Nonetheless, a probabilistic statement is in
itself less susceptible to interpretational errors or misun-
derstandings than a qualitative statement that uses -
again - words for interpretation that might be ambiguous.
Another relevant advantage of quantified assess-

ments is the simplicity and comparability of results.
The benefits of retrieving a result that can be com-
pared to results, say, some years ago are obvious: ap-
plying the same quantitative method can be used to
evaluate scientific progress in modelling and scientific
understanding (if uncertainty decreases) or illustrate
that the nature of a process is more complex than as-
sumed years ago (if uncertainty increases). However, a
critique formulated by Kandlikar et al. [35] is that
biases can result if simple schemes that attempt to
represent uncertainty in a uniform manner across
many different contexts are depending on how much
detail is presented in the information. This effect is
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analysed by ignorance aversion. Indeed, quantification, or
for that matter qualification to summary terms, can result
in a loss of detail and reasoning. It is not totally clear how
bias can be created through such a process. However, it is
the very task of an uncertainty assessment to transform in-
formation of various kinds (quantitative, qualitative, narra-
tive, implicit assumptions, etc.) into a form that can be
understood without the profound expertise that is neces-
sary to accomplish the uncertainty assessment itself.
The question whether a quantitative assessment method

is preferable to a qualitative assessment method cannot be
answered purely by evaluating the respective (dis-) advan-
tages. There are practical limitations that may render a
quantitative assessment impossible. However, for the
development of an uncertainty assessment in the context of
energy economics, relevant differences to climate science
prevail that might justify the preferable use of quantitative
methods.

Climate science and energy economics
The discussion concerning confirmation of climate models
may serve as orientation, and energy model evaluation
could profit from these considerations. Lloyd [20] con-
cludes that climate models should not be judged primarily
or solely on the basis of what they are weak at. This is an
important aspect to remember when evaluating energy
models as well. Generally, her approach to confirmation
‘takes it as a matter of degree; models can accrue credit
and trustworthiness upon being supported by empirical
evidence as well as by theoretical derivation’. Lloyd illus-
trates the strengths in terms of confirmation as model fit,
variety of evidence, independent support for aspects of the
models and robustness for climate models. These con-
cepts, bearing on the reliability of models, can be applied
to energy models as well.

Model fit
Model fit refers to the ability of model results to repre-
sent data that can be observed empirically, possibly ex
post. Unfortunately, energy models have a rather poor
history of model fit [36,37]. Analysis of the main reasons
for deviations of model results to evidence are sum-
marised as:

� unanticipated strong political decisions such as
closing of mines in the UK, feed-in tariffs in
Germany and world climate change concerns;

� unexpected energy requirements, like the transport
behaviour and the rush for gas;

� definition and availability of statistical data [36].

The main difference when comparing climate models
with energy models is that energy models represent and
simulate a well-understood system with mainly economic
drivers. In contrast, climate modelling has its challenges
in representing chaotic systems with at least partially little
understood causal relationships and magnitudes of impact
of system components. It was, at least in principle, pos-
sible to know today with sufficient accuracy how the
energy system will look like in a given point of time in the
future. The problem is that many interests must be met
and decisions not tend to be of durable nature as political,
environmental or economic circumstances change. This is
one reason why energy roadmaps, energy strategies and
energy programs on a political level are important. These
commitments to a specific system state in future allow for
energy modellers to accordingly define constraints in
models and consequently investigate - using models - dif-
ferent paths to meet the desiderata. Results of such model
simulations may be cost-effective, environmental-friendly,
socially accepted or other (possibly optimised) system
development paths. The reason why model fit of energy
models yields a poor record in the past hence is not
(primarily) due to little understanding of the system
but must rather be contributed to influences on the
system of radical nature that cannot be anticipated.
Moreover, such radical impacts (e.g. political reorienta-
tion) do not lead to any improvement of energy models or
target system understanding for their nature is vested in
societal decisions that can and should not be anticipated,
hence allowing evolvement of society.
Variety of evidence
Lloyd refers in her analysis to the fact that climate
models can accurately predict other variables than, for
example, global mean temperature. This type of confirm-
ation translated to energy models could be interpreted
as correctly predicted installed capacity for electricity
generation, fuel mix and the like. Variety of evidence in
energy models has close relation to the constraints and
assumptions built into the model. As Knutti et al. [38]
state, it is due to the physical principles known to be true,
such as conservation of mass, energy and momentum,
that can be applied and transferred across hierarchies of
models that confidence in climate models is justified. This
physical nature of climate modelling can only partially be
applied in energy models. Energy systems have physical
limitations, e.g. land use, maximum solar radiation or
exhaustible resources; however, the system state is mainly
dependent on economic drivers, law requirements and
incentive policy. These are not physical, law-obeying
mechanisms, although, a kind of cause-and-effect rela-
tion can be observed. Due to this different nature of
the modelled system, variety of evidence cannot be
applied for confirmation in the same sense as climate
models are verified by true evidence. The same is true
for independent support for aspects.
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Robustness
Lloyd applies a robustness analysis developed by Weisberg
[39] that puts forward a robust theorem of the general
form: ceteris paribus, if [common causal structure] obtains,
then [robust property] will obtain. The causal structure
captured in the respective models seems to be the key
difference between climate models and energy models.
Causal structures in energy models, depending on the
model in question, are for example, inverse supply func-
tions [2], whereas in climate modelling, for example,
thermodynamic laws are appliedj [40]. It seems that cli-
mate science partially due to ignorance of (components
of) the target system face epistemic uncertainty. Stevens
and Bony [41] analyse that for example, tropical precipita-
tion over land and consequently vegetation dynamics are
poorly understood. As a result the understanding of the
carbon cycle is limited.
It is necessary to clarify the applied interpretation of

implication used to analyse Weisberg’s theorem. Let A
denote the antecedent ‘common causal structure’ and B
denote the consequent ‘common property’ of the theorem.
The ‘if…then’ clause can be interpreted in different ways.
A strict material implication in its truth functional sense
means that A is false or B is true [42]. Another interpret-
ation would be a logical implication to state that B is
already logically implicit in A. This interpretation means
that it is a logical consequence that a common causal
structure implies a common property to obtain (ceteris
paribus). Another interpretation of implication (A implies
B) is that B is deducible from A by logical reasoning. To
prove that it is logically deducible that a common property
obtains if a common causal structure obtains would
surpass the scope of this text. But, it may well be possible
to do so. Weisberg departs in this question from Levins,
Orzack and Sober and clarifies that robustness analysis is
effective at identifying robust theorems, and, whilst it is
not itself a confirmation procedure, robust theorems are
likely to be true [39]. It is important that a theorem as put
forward by Weisberg does not presuppose the truth of A.
In other words, the theorem does not claim to guarantee
that if a common causal structure obtains, this implies
that a robust property will obtain (ceteris paribus). In this
sense, the theorem is much weaker than one would wish
for an uncertainty analysis. If robust theorems according
to Weisberg are likely to be true, the only case that is
unlikely is the one where A is true and B is false, for
this renders the theorem to be false. Hence, the unlikely
case is that if common causal structure obtains then
robust property will not obtain, ceteris paribus. But as
indicated by the example of Stevens and Bony, the
antecedent ‘common causal structure’ (A) can well be
false. The use of Weisberg’s theorem does not indicate
if B (robust property will obtain) is true or false if A is
false.
Hence, if common causal structure changes in climate
models due to new understanding, robustness, defined
as such, does not allow inference to the truth of the
associated robust property or uncertainty.
In the case of energy models, causal structures face less

uncertainty of epistemic nature, but rather uncertainty
due to social or political under-determinism of future
developments. In this case, robustness could indicate
some degree of certainty. However, it is not straightfor-
ward to conclude from robust results to uncertainty,
even in a qualitative manner.
Another challenging issue in this respect is the ceteris

paribus clause. A common approach for robustness ana-
lysis is scenario technique. The choice of parameters
that are defined stable (ceteris paribus) and parameters
or constraints that are varied significantly influences the
results of energy models. It is therefore a choice, what
results appear robust, for any result could be in principle
produced by choice of parameters (e.g. by technology
prices in cost optimization models). Hence, robustness
as an indicator for uncertainty in energy scenarios has
limited potential for uncertainty assessment of energy
model results.

A discussion of Bayesian approaches
Probabilistic interpretation of uncertainty assessments is
considered valuable, as the IPCC guidance note for treat-
ment of uncertainties specifies [23]. Uncertainty and risk
are to be assessed to the extent possible, and if appropriate
probabilistic information is available, special attention to
high-consequence outcomes should be given.
Probabilistic uncertainty assessments satisfy requirements

1 (clear indication how reliable the findings are), 5 (intui-
tively understandable and straightforward to communicate)
and 6 (reproducible and unambiguous), if the methodology
of assessment is a standardised process. As well in the
IPCC guideline notes, as in the approach by Walker,as in
the NUSAP method statistical knowledge is considered as
knowledge with little inherent uncertainty. It seems thus
appropriate to consider an assessment method that is based
on statistical data and produces probabilistic uncertainty
assessment results.
Bayesian statistics could provide such a method. As

Bernardo [43] points out, the comprehension of prob-
ability in Bayesian statistics corresponds precisely to the
sense in which this word is used in everyday language.
This quality corresponds to satisfying requirement 5
(intuitively understandable and straightforward to commu-
nicate): the understanding of probability as a conditional
measure of uncertainty associated with the occurrence
of a particular even, given the available information and
accepted assumptions. Bernardo stresses that a conditional
probability measure is dependent on two arguments, the
event E with the uncertainty to be measured and the
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conditions C of the measurement, ‘absolute’ probabilities
do not exist [43].
In typical applications, one is interested in the prob-

ability of some event E given the available data D, the set
of assumptions A which one is prepared to make about
the mechanism which has generated the data, and the
relevant contextual knowledge K which might be available.
Thus, Pr (E|D, A, K) is to be interpreted as a measure of
(presumably rational) belief in the occurrence of the event
E, given data D, assumptions A and any other available
knowledge K, as a measure of how “likely” is the occur-
rence of E in these conditions [43].
In Bayesian statistics, a prior probability that represents

the presumption of the statistician is combined with
empirical data to derive a posterior probability by means
of Bayes’ theorem.

p
�
ω jD; A;KÞ ¼ p

�
DjωÞp�ωjKÞZ

Ω
p D ωÞp ω KÞdωjðjð

ð1Þ

With p(D|ω) being a formal probability model for some
(unknown) value of ω, the probabilistic mechanism which
has generated the observed data D; p(ω|K) being the prior
probability distribution over the sample space Ω, describ-
ing the available (expert) knowledge K about the value of
ω prior to the data being observed and p(ω|D,A,K) being
the posterior probability density.
The following general description of BMA is primarily

based on [44] and [45]. Suppose ω represents an input
variable to a model. Its posterior distribution given data
D is:

pr ωjDð Þ ¼
XK
k¼1

pr ω MK ;DÞpr MK DÞjðjð ð2Þ

where MK represents the considered models. This is an
average of the posterior distributions und each of the
models considered, weighted by their posterior model
probabilities (PMPs). The posterior probability for model
MK is given by the specific form of Bayes’ theorem,

pr MK jDð Þ ¼ pr DjMKð Þpr MKð ÞXK

l¼1
pr D MlÞpr Mlð Þjð

ð3Þ

with

pr DjMkð Þ ¼
Z

pr D θk ; MkÞpr θk MkÞdθkjðjð ð4Þ

representing the integrated likelihood of model MK. θk is
the vector of parameters of model MK, pr (θk|Mk) is the
prior density of θk for model Mk, pr(D|θk, Mk) is the
likelihood and pr(Mk) is the prior probability that Mk is
the true model. For a regression model θ = β, σ2, all
probabilities are implicitly conditional on the set of all
models being considered.
Critique that has been offered for Bayesians includes but

is not restricted to scepticism versus prior probabilities
[46] and interpretational aspects [47,48] and in response
[49,50]. Some arguments are also briefly presented by
Gelman [51]. It outreaches the possibilities within this
text to discuss all of them; therefore, the focus will lie
on critique related to Bayesian methods in the context
of climate models and energy models. One of the main
objections to the use of Bayesian methods is the arbitrari-
ness of the prior distribution. In the context of climate
science, Betz [46] argues that the dependence on (1) the
specific prior probability distribution over the initially
considered hypotheses and (2) the climate model used for
probability estimates of climate sensitivity obtained by
Bayesian learning is problematic. According to Betz, the
choice of prior distribution is an arbitrary assumption and
- in the context of climate modelling, with limited sample
sizes - entail that the final posterior probability is a func-
tion of the initial prior (which is arbitrary). This critique
of prior distribution influence on posterior probabilities is
a well-known and not a new objection to Bayesian analysis
cf. [52,53].
Thus, the arbitrariness of the prior distribution is con-

sidered to be problematic. Put in Bayesian terms, an
expert elicitation result is nothing but a collection of
prior probabilities and though, this method is used for
uncertainty assessment in climate modelling as well as
energy modelling. If one accepts that a Bayesian statistician
is an expert, the claim can be formulated even stronger,
namely, that a Bayesian approach exactly satisfies require-
ment 4 (incorporate qualitative and quantitative aspects).
This is to say that by means of prior distributions not only
historical data (the likelihood) is used to assess uncertainty,
but also a qualitative, subjective expert judgement can be
incorporated. This not only renders the prior distribution
choice a relevant tool for a complete representation but
also responds to another critique that is often brought up
against statistical methods in general, namely, that past
evidence cannot provide for future developments. By
means of a prior distribution, the likelihood of past events
is relativized and both are possible, the recognition of the
world as it is (was) and the representation of how this
evidence is to be evaluated with respect to the future. It
could be considered thus as a distinct virtue that prior
probabilities depend on expert judgement rather than
being problematic. The argument that subjective criteria
can enrich a (statistical) model rather than disempower its
findings due to lack of objectivism is also put forward
by Isaac. His ‘integrated subjectivism’ also characterises
a Bayesian model as the simplest form of integrating
subjective knowledge and objective likelihoods with the
aim of ‘transforming a scientific model into a decision-
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theoretic one in which objective parameters (about the
world) and subjective parameters (about the agent) peace-
fully coexist’ [54].
Requirement 4 (incorporate qualitative and quantitative

aspects, i.e. complete representation) is satisfied more
explicitly with a BMA evaluation that uses informative
priors. However, it has been argued that even improper
priors (aka non-informative) or weak priors (i.e. flat priors)
contain information about the subjective certainty of the
modeller, e.g. [55].
Another criticism is sharpened by Kandlikar et al. [35]

and focuses on two problematic assumptions:

� precision: the doctrine that uncertainty may be
represented by a single probability or an
unambiguously specified distribution;

� prior knowledge of sample space: the assumption
that all possible outcomes (the sample space) and
alternatives are known beforehand.

Indeed, the problem of deceptive preciseness of prob-
ability distributions needs to be addressed when an
uncertainty assessment is based on probabilities. One
mean to that end could be a transparent documentation
of data used and assumptions made for the uncertainty
assessment. Again, comparing with the predominant
assessment method, expert elicitation, such critique could
hold here as well, however, ambiguity in expert elicitation
results seems to be perceived as less problematic. Another
mean to that end could be a systematic sensitivity analysis
in Bayesian terms. In this effort, a variety of prior prob-
abilities and its effect on posterior probabilities could yield
important insight, possibly even in cooperation with
expert elicitation to define priors that are suitablek. BMA
for input variables of energy models addresses this critique
by evaluating a lower bound of uncertainty. Another
possible way that is not investigated in the text could
be the computation of interval probabilities that specify
an interval of uncertainty for an input variable. However,
due to considerations of ignorance, a lower bound seems
more appropriate that respects the fact that unknown or
intentionally ignored influences might increase uncer-
tainty by a not specified amount.
Prior knowledge about the sample space Ω seems to

pose more a problem in climate science than in energy
economics. Possible outcomes and alternatives in energy
economics are likely to be more predictable than in climate
science. For example, in climate science, it might be true
that a possible outcome is unknown due to interdependen-
cies that are not well understood or orders of magnitude of
effects that outrange expectations and the sample space
does not account for that possibility. For example, if conse-
quences of unprecedented gaseous concentrations (as in
the past low O3 in the stratosphere [56] or more recently
high CO2 concentrations in the atmosphere) are modelled,
Ω might not be complete. In energy economics, some
non-explicit assumptions such as that the target system
will exist in a comparable way within the time horizon and
geographic scope of the model will simplify the treatment
and assessment of the sample space. This is not due to
insufficient modelling techniques, but rather to science
being an evolving matter that naturally develops with new
insight, new measurement techniques and scientific under-
standing. However, the critique is certainly valid in the
context of energy scenarios if key assumptions are consid-
ered such as gross domestic product (GDP) growth, future
energy prices or population growth. Even if sound forecast
data from statistical sources are availablel, these assump-
tions could be associated with deep uncertainty and pos-
sibly, the sample space Ω is not complete. This fact might
belong to the realm of recognised ignorance, as Walker
et al. term it. Especially for such key assumptions, an
uncertainty assessment that evaluates as many potential
influences on the key assumption as possible is adequate.
One possibility of limiting such deep uncertainty in

the context of energy economic models is a deliberate
choice of system boundaries. In addition to typically
topological, economic or sectorial system boundaries
and sub-system units, social systems can and should be
detailed in energy models, see [57]. In energy models, as
in climate models, one can intentionally define system
boundaries to represent parts of the integrated (energy)
system with simplified connections across the system
boundaries. However, for climate models that are con-
cerned with questions of global impact and consistent
regional interpretation, meaningful results can only be
obtained within a global system boundary. IPCC [58]
specifies that only general circulation models (GCMs)
have the potential of consistent estimates of regional
climate change which are required in impact analysis.
Energy models can be designed to depict a certain part
of the global energy economic system, hereby possibly
increasing uncertainty due to ignorance of effects on a
larger scale, and possibly reducing uncertainty within
the system boundaries as Ω becomes more complete. It
thus seems to be a trade-off between chosen ignorance
(due to system boundaries) and recognised ignorance
(that one is aware of but cannot address). The BMA
uncertainty assessment for input variables to energy
models respects these uncertainties by formulating a
lower bound of uncertainty.
It is worth discussing whether such uncertainties are

better assessed with qualitative methods than in quanti-
tative methods in probabilistic terms. The choice of key
assumptions and their related uncertainty clearly limits
the inferences that can be drawn from model results.
However, the assessment of such deep uncertainties
could be endeavoured in Bayesian terms.
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The Bayesian endeavour
A Bayesian approach could potentially satisfy the require-
ments previously defined. This section is concerned with
how an implementation of Bayesian statistics for uncer-
tainty assessment in energy models could be achieved. In
Figure 4, a chart of the design of many quantitative energy
models is shown. The information flow starts on the left
side with influences that effect different input variables to
energy models, exemplified by resources, demand and
infrastructure for the input variable energy prices. Input
variables are individual for every energy model so that the
listed input variables energy prices, GDP, population, effi-
ciency and demand can be regarded as typical examples.
Input variables then are processed by the mathematical
core of the energy model. Different types of models are
possible; in the chart, the examples computable general
equilibrium (CGE), linear programming (LP) models,
mixed complementary problems (MCP) and stochastic
models are mentioned. Finally, on the rightmost side, the
output of the model, the energy scenario is the result of
that information flow and computational effort.
The key idea is to assess the uncertainty of the input

variables on the left side of the graph in Bayesian terms
and thusly define a lower bound of uncertainties associ-
ated with model results (model output). If one accepts
the premise that model output cannot be less uncertain
than model input, this lower bound could be defined by
the uncertainty of the input variables. It is important to
stress at this point that the BMA method for input vari-
ables does not replace an energy model, e.g. LP, MCP or
a CGE model, to name just a few that are a common
practice in energy economics. The aim is rather to assess
uncertainties of input variables that are specific for a
given model by means of BMA. This process should
render transparent that independent of the predictive
power of an energy model the sheer use of variables that
are inherently uncertain leads to model outcomes that
must reflect that uncertainty. It can and should not be
the aim of an energy model to present results as more
Figure 4 Schematic input-output structure of energy models.
or less certain than they are due to the nature of a non-
deterministic world which the target system is based in.
The structure, nature, scope, aim and mathematical
formulation of energy models are highly diversified. For a
given energy economic question, many different potential
energy models can be designed to provide an answer.
However, any model that could be designed will have
input variables that are more or less uncertain. The aim of
the proposed method is providing an estimation of these
uncertainties independent of the specific (dis-) advantages
a given model holds with respect to other energy models
that could answer the question.
The predominant assessment method, expert elicitation,

of uncertainty is used as reference. An expert elicitation
process makes use of expert knowledge to assess how
uncertain an assumption or a finding is. But what exactly
is expert knowledge? The supposition is that expert know-
ledge is based on understanding of causal relationships,
(long) record of observation or research, inclusion and
exclusion of relevant factors and an intuitive ‘feel’ for the
field of expertise. At least these virtues should be met by a
Bayesian approach as well, together with the requirements
previously defined.
The understanding of causal relationships - in the

context of energy economics - refers to the ability of
understanding market mechanisms, micro- and macro-
economic processes, social processes, etc. Consider the
example of energy prices in Figure 4. If an assumption
regarding the future energy price of, for example, natural
gas is to be defined, it would be necessary to think of
influences that impact the natural gas price, for example,
resources, (global) demand, infrastructure, efficiency of
devices and the like. These influences need not be
assessed in qualitative terms or subjective opinion of an
expert, for there are statistical data available. If such
statistical data are not readily available, it might be
necessary to look for a suitable statistical representation
of the influence, e.g. for consumer acceptance [59], or
methods described by [60] with respect to the food



Figure 5 An exemplary coefficient estimate for the effect of
GDP on the natural gas price accomplished by BMA methodn.
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industry. A sound record of research and a long record
of observation can be translated in statistical terms in
sufficient large sample sizes of the statistical data. This
might pose a problem if time series are short or the
influence record is short.
The causal relationships, or how an influence bears on

the input variable in question, in the example, the natural
gas price, could be represented in a mathematical relation,
e.g. a linear regression model. A regression model repre-
senting the dependent variable, natural gas price, and the
explanatory variables, the influences, could capture causal
relationships and the magnitude of impact of an influence
on the input variable. Note that, non-linear models could
be applied also, but for the analysis of the impact of an
influence on the dependent variable (that is, the input vari-
able in an energy model), it suffices to evaluate whether the
influence increases or decreases the dependent variable
and with what order of magnitude (that is, the coefficient
estimate). This is straightforward standard statistical work.
But this would not respect that the representation with a
linear model itself increases uncertainty, for one might
choose the wrong explanatory variables (influences) or not
enough. This problem can be addressed by BMA.
BMA allows the inclusion and exclusion of potential

influences by means of a Markov Chain Monte Carlo
(MCMC) samplerm investigating the whole model space,
i.e. the set of all possible variable combinations that can
be employed to represent the dependent variable. In
applying the BMA method, the uncertainty assessor
firstly gathers any data that might be - even only in an
indirect sense - be a relevant influence on the dependent
variable. Let these candidate explanatory variables be k.
The model space from which to choose the appropriate
linear regression model is then 2k. Any variable could be
included or excluded, reliant on the explanatory value
for the dependent variable. This explanatory value is
assessed as posterior inclusion probability (PIP) for
individual explanatory variables, and the individual models
(containing specific explanatory variables) are ranked
according to their PMP. Hence, the explanatory power of
each variable and of different competing linear regression
models can be assessed. As the name indicates, these
results of BMA are probabilities. The prior probabilities
concern the assessors’ prior belief about how many
explanatory variables are relevant. BMA then provides
1) the best linear regression model in terms of highest
PMP and 2) the individual relevance of influences in
terms of coefficient probability estimates and posterior
inclusion probability PIP. In Figure 5, an exemplary
coefficient estimate for an explanatory variable (GDP)
of the natural gas price is illustrated.
On the abscissa, the coefficient value for the variable

in the linear regression model is quantified. The ordinate
represents the probability density for the coefficient
value (i.e. the rate of change of the conditional mean of
the natural gas price conditional on the change of GDP).
The double conditional standard deviation (2× cond. SD)
is indicated in the red dotted line. An equivalent chart can
be produced for every explanatory variable of the compet-
ing models. The PIP of this variable is 96.1% what reflects
that if the variable was contained in a model, competing
models were less successful in explaining the data. In
other words, the PIP is the sum of PMPs for all models
wherein a covariate was included. The shape of the
probability density and the low range of double standard
deviation (approx. 0.4 to 1.4) indicate that variation from
the conditional expected value (cond. EV) is rather low.
In practice the approach can be detailed in several

steps. In step one, relevant input variables, or all input
variables - depending on the size of the energy model
under scrutiny - are identified, e.g. GDPo within the
energy models’ system boundary. In the next step, stat-
istical data of economic, ecological, social or from other
disciplines is gathered that is suspected to influence the
input variable (e.g. statistical data concerning, industrial
production, import and export, taxes and subventions,
birth and death rates, education, etc.), including statistical
data of the input variable. This input variable (GDP) in
the uncertainty assessment becomes the dependent vari-
able on these influences. Note that, in contrast to other
methods, there are hardly practical limitations to the
amount of influences that can be considered, for BMA by
means of a MCMC sampler investigates the model space
and ranks explanatory variables (influences) according to
their PIP. The next step is the definition of the form of
mathematical representation, e.g. a multivariate linear
regressionp. As many potential explanatory variables are
defined, the question is what variables should be included
in the model. BMA estimates models for all possible
combinations of explanatory variables and constructs a
weighted average over all of them. Then, the choice of
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a suitable prior distribution is defined, e.g. Zellner’s g-
prior [61,62]. If the integrated likelihood is constant
over all models, the PMP is proportional to the mar-
ginal likelihood of a specific candidate model, i.e. the
probability of the data given that model times a prior
probability. The prior probability reflects how probable
the expert thinks the model is before looking at the
data [63]. The thence generated models with highest
PMPs can be evaluated, and a model that best repre-
sents the dependent variable (e.g. GDP) can be chosen.
Finally, the uncertainty estimation for the input variable
is derived from the PMP of the model chosen.
An additional feature that is not the focus of this text

is the possibility of generating predictive distribution
functions from the chosen model that consistently with
past evidence and expert judgement represent the
dependent variable for given assumptions of explanatory
variables. This could foster consistency in the choice of
key assumptions.
The interpretation of BMA results as uncertainty can be

straight forward if uncertainty is suitable defined. To that
end, a definition that is based on probability is introduced.
Definition: Uncertainty equals the probability that

statement S might not be true.
Given, by means of BMA, a PMP is calculated for an

uncertainty model (e.g. a PMP of 13%q for a model that
represents the natural gas price), uncertainty - by defin-
ition - would be at least 87% for the dependent variable.
This would mean that the input variable ‘natural gas
price’ to an energy model holds an uncertainty of at
least 87%, even if all relevant explanatory variables are
considered. Hence, the results of a model including an
assumption about the natural gas price cannot be less
uncertain than 87%.
In other words, the PMP reflects the probability that the

input variable thusly described matches data. For a model
with a PMP of 13%, the associated uncertainty would be
at least 87%. A clarifying statement of the following form
could accompany model results.
“In consideration of expert judgement, statistical data

of influence X1, influence X2, influence X3,…, of the last
25 years, the uncertainty that the input variable can be
described as such is at least 87%.”
For every influence X1, X2,…, the PIP indicates the

explanatory contribution of the influence and 1-PIP
indicates the uncertainty that the influence contributes
to explaining the dependent variable of a given model
(typically the one with the highest PMP). In the example,
the uncertainty that GDP explains the natural gas price
(together with the other explanatory variables) of the
chosen model is 3.99% (1 − 0.9601 = 0.0399). Such an
assessment clearly satisfies requirement 1 as uncertainty
expressed as probability density is a clear indication how
reliable the findings are.
The third virtue of expert knowledge, inclusion and
exclusion of relevant factors, could be achieved by this
standardised method, hereby satisfying requirement 2
(applicable independent of assessor’s expertise).
The approach would limit many intuitive over- or

under-estimations of impact of influences on variables
that figure as input variables in energy models. It is think-
able that different experts evaluate individual influences as
more/less relevant for the assumption of an input variable
(e.g. a natural gas price assumption) thereby generating
ambiguousness and dissent. A standardised method, rely-
ing on statistical data, i.e. knowledge with little associated
uncertainty in and by itself, could yield significant im-
provement in uncertainty assessment for energy models.
However, as expert knowledge is an important part of
assessment methods, it is possible to take this by prior
probability specification into account.
A key quality of the BMA method for input variables

is that model uncertainty of the linear regression model
itself, and thus, the assessment method’s uncertainty is
quantified in probabilistic terms. This is a distinct advan-
tage of the method as opposed to purely statistical or
qualitative methods. Other methods that are applied in
uncertainty analysis, for example, standard statistical ana-
lysis or purely qualitative methods ignore that source of
uncertainty. A standard regression analysis is conditional
on the assumed statistical model, and the analyst may
be uncertain whether it is the best representation. If an
expert Delphi [64,65] is carried out opinions are rarely
scrutinised for their correctness or compliance with statis-
tical evidence. However, if an expert is asked, how prob-
able she thinks her evaluation is, a prior distribution could
be constructed.
Another requirement previously defined is the applicability

to different energy models (comparability of results),
requirement 3. As indicated by Figure 4, the assessment
method is concerned with input data to energy models
and is hence independent of the mathematical model
that consequently processes the input. The uncertainty
assessment method would be applicable for different kinds
of models common in energy economics, LP’s, MCP’s,
CGE’s, stochastic models or even qualitative models that
use input variables.
Requirement 4 (inclusion of qualitative and quantitative

aspects) to assure a complete representation can be
achieved through prior probabilities and statistical data.
The resulting posterior probabilities and the probabilistic
interpretation of uncertainty are straightforward to com-
municate, as demanded in requirement 5 (intuitively
understandable and straightforward to communicate).
Finally, requirement 6 demands for reproducibility and

unambiguousness. Given assessors use the same set of
data, the results of BMA are reproducible. However, a
source of ambiguousness could be prior probability
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choice. This lies, as previously discussed, in the very na-
ture of expert judgement. A sensitivity analysis to evaluate
such ambiguousness could both, increase understanding
of the BMA method within this context, and indicate to
what extent expert elicitation has to be put in perspective
to statistical data.

Results and discussion
Results of applying BMA to energy model input variables
are PMPs of competing models for input variables of an
energy model. The PMPs of the input variables can then
be used to define quantitatively the associated uncertainty
of the specific input variable. The method respects previ-
ously defined requirements. The result is an uncertainty
assessment of the form: applied input variable X has an as-
sociated uncertainty of at least Y%. Results of the model
are thus associated with an uncertainty of at least Y%.
Note, that such a result demands acceptance of the
premise that model results cannot be less uncertain
than model input.
Existing uncertainty assessments for energy models pro-

vide evaluations of energy models or energy scenarios.
However, the approaches discussed in this text lack some
qualities in the context of energy modelling that BMA for
input variable uncertainty estimation could provide.
The method described by Walker et al. is rather a classi-

fication of uncertainty than an assessment that explicitly
states uncertainty of results (requirement 1). On the other
hand, methods that are applied in classical uncertainty
quantificationr such as statistical analysis, stochastic mod-
elling or error propagation computation, although being
explicit, treat uncertainties in a mechanistic way that
does not respect the various social and political aspects
(requirement 4). Methods that mainly rely on expert
elicitation, such as the NUSAP method might lack repro-
ducibility of results and objectiveness (requirements 2 and
6). BMA could potentially combine the desired qualities.
Intuitively understandable (requirement 5) uncertainty
assessments that can be produced for different energy
models (requirement 3) only dependent on the respective
input variables the model demands could provide relevant
insight in uncertainties that are associated with model
input. As potential consequence of applying BMA for
input variable uncertainty, transparency regarding model
results with respect to the reliability of such findings could
be evaluated and communicated. Moreover, input vari-
ables could be classified according to their adherent
uncertainty if the method is applied. And finally, but left
for further research, the possibility of generating predictive
densities by means of BMA could lead to consistent input
variable values that respect influences across system
boundaries of a specific model.
All uncertainty assessment methods have advantages

and disadvantages. In spite of the successful fulfilment of
previously defined requirements, the BMA approach for
input variables has deficits that need to be discussed.
A rather practical issue stems from the fact that the

approach is parametric. This means that in practice,
many different input variables need to be assessed if
large and complex models are analysed and a significant
amount of data collection and preparation seems neces-
sary. One way, which proved successful in the NUSAP
method, for reduction of assessment variables is a classi-
fication of input variables and a consequent sensitivity
analysis to discern highly relevant input variables [25].
Such a procedure could be suitable for the BMA approach
as well.
Another issue might arise if input variables yield indi-

vidual uncertainties of different orders of magnitude. The
question then arises whether the least certain defines the
uncertainty or if model dependent interpretation of indi-
vidual uncertainties (of individual input variables) would
be meaningful. It is not straightforward to see where in
the mathematical core of energy models input variables
are processed, and hence, tracing back results to individ-
ual inputs could be difficult. A form of meta-analysis, as
proposed by [66,67] could possibly give relevant insight
regarding the uncertainty significance of individual input
variables across studies of different model applications, as
done for studies in medicine (psychotherapy) [68].
And finally, an issue could arise if an energy model

incorporates aspects or effects that are relatively ‘new’,
e.g. unconventional gas in Europe. Due to data scarcity
and lacking maturity of available processes, a Bayesian
approach to assess such input data would be difficult.
The same problem of data scarcity can occur if scenario
assumptions are not explicit, e.g. social, or psychological
assumptions. If data are available for such assumptions,
their bearing on an input variable to an energy model
can be incorporated by the BMA method and hence
could increase transparency in that aspect. If data are
not available, it must be communicated that the aspect
is not part of the uncertainty assessment.
In the light of increased transparency, inter-subjective

independency, quantitative explicit results, comparability of
results and methodological advantages (reproducibility and
inclusion of subjective expert judgements), the expected
value of assessing input variable uncertainty of energy
models amounts to a better understanding of the associated
uncertainty of an energy scenario. This is valuable informa-
tion for the evaluation of results of different models. For
example, top-down models are distinct from bottom-up
models with regard to the assumptions they apply. The pro-
posed uncertainty assessment could potentially add value
for the comparison of energy scenarios that stem from
different models. In addition, but left to further research, is
the potential of scrutinising model ensembless, as demon-
strated by [69] in the context of weather forecasts.
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Conclusions
BMA for uncertainty quantification of input variables
could potentially satisfy the requirements that a versatile
applicable and standardised method for uncertainty
assessment in energy economic modelling demands.
Given the described advantages and disadvantages, it is
at least worth discussion whether such an approach
could improve the assessment itself and consequently
could put the inferences and policy recommendations
based on model results in perspective. This in turn
should enable stakeholders and decision makers to
include reported uncertainties in their decision making
processes and increase trust in scientific findings. Trust
in scientific findings is not solely generated by unerring
model results but also by acknowledgement and trans-
parency of uncertainties respecting that reality is not
strictly deterministic.
Further research should be undertaken concerning the

critical remarks and potential solutions for the applica-
tion of the method. To this end, firstly an application of
the approach to different models should yield insight
allowing for further improvement of the approach.

Endnotes
aFor further information on energy models as referred

to in this text see [70-72], or [73] in Germany.
bThe green kite is spanned up by the minimum scores

in each group for each pedigree criterion; the orange kite
is spanned up by the maximum scores. The orange band
between the green kite and the red area represents expert
disagreement on the pedigree scores for that variable. In
some cases, the picture was strongly influenced by a single
deviating low score given by one of the six experts. In
those cases, the light green kite shows what the green kite
would look like if that outlier would have been omitted.

cGiven that the same experts evaluate many fields of
model-associated uncertainties, it is thinkable that the ex-
pertise in some areas is not as sound as one would expect.

de.g. Limited number of experts, limited knowledge of
experts.

eHowever, Smithson [74] has made a strong case that
‘in all tasks, precise-conflictive sources were viewed as
less credible than ambiguous-consensual ones even
when subjects expressed preference for the precise-
conflictive alternative.’ what suggests that the require-
ment of inter-subjectivity has more relevance in terms
of acceptance of the assessment.

fThis might trace back to a criticism of [35] on the
interdependence of likelihood and confidence: ‘When an
event is said to be extremely likely (or extremely unlikely)
it is implicit that we have high confidence’.

gAs defined by [35], uncertainty that results from myr-
iad factors both scientific and social and consequently is
difficult to accurately define and quantify.
hQualification of the degree of agreement: summary
terms: low, medium or high [29].

iBy that is meant that the uncertainty captured between
2 and 3 is not more/less than the uncertainty captured
between 4 and 5, or for that matter 5 and 6.

jFor more information see for example [75-77].
ke.g. Experts could be questioned what probability to

a qualitative assessment like ‘surely no more/less than’
can be attributed. In that way, a subjective degree of
belief can lead to a subjective prior distribution. See
also [78,79].

lSuch as [80,81].
mOne could also use a Bayesian Markov chain Monte

Carlo (BMCMC), as for example, Kim et al. have done
to determine optimum tender prices [82].

nThis result stems from work not published yet, avail-
able from the author. Abbreviations: GDP gross domestic
product, PIP posterior inclusion probability, Cond. EV
Conditional expected value, SD standard deviation. Note
that, the shape of the probability distribution offers a
further indication of the reliability of the conditional
expected value.

oNote that, input variables may vary considerably be-
tween models. For example, a bottom up model as the
TIMES linear program [2] does not enter economic
performance directly in form of a GDP input variable.
Instead, such macro-economic assumptions must be
translated in sectorial demands, e.g. megakilogrammes
of crude steel demand. This transformation is often done
based solely on expert judgement for a given sector of
an energy model. A BMA uncertainty assessment could
improve transparency with regard to that process. An
example of a demand forecast is industrial production is
provided by [83].

pOf course other models can be applied as well, for
example, generalised linear models, proportional hazard
models or logistic regressions.

qA posterior model probability (PMP) of ca. 11% is a
rather poor model representation of observed data.
However, similar approaches in other contexts show
that low PMPs are not unusual, e.g. infrastructure PMP
0.39 [84], econometric context PMP 0.3 [85], medical
context PMP 0.17 in a dataset on primary biliary cir-
rhosis [44] or [86]. For an explicit application to fore-
casts, see [69]. For a BMA example in the context of
hydrology, where the BMA method was coupled with a
maximum likelihood estimation proposed by Taplin,
see [87].

rMainly applied in engineering.
sEnsembles as used by Raftery are model results in

which a model is run several times with different initial
conditions or model physics. This might be applicable
for energy models as well where different key assump-
tions are applied or key assumptions are varied.
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