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On-microscope staging of live cells reveals
changes in the dynamics of transcriptional
bursting during differentiation

D. M. Jeziorska1,4,7, E. A. J. Tunnacliffe 1,7, J. M. Brown 1, H. Ayyub1,
J. Sloane-Stanley1, J. A. Sharpe1, B. C. Lagerholm 2,5, C. Babbs 1,
A. J. H. Smith1,6, V. J. Buckle 1 & D. R. Higgs 1,3

Determining the mechanisms by which genes are switched on and off during
development is a key aim of current biomedical research. Gene transcription
has beenwidely observed to occur in a discontinuous fashion, with short bursts
of activity interspersed with periods of inactivity. It is currently not known if or
how this dynamic behaviour changes as mammalian cells differentiate. To
investigate this, using anon-microscopeanalysis,wemonitoredmouseα-globin
transcription in live cells throughout erythropoiesis.Wefind that changes in the
overall levels ofα-globin transcription aremost closely associatedwith changes
in the fraction of time a gene spends in the active transcriptional state. We
identify differences in the patterns of transcriptional bursting throughout dif-
ferentiation, withmaximal transcriptional activity occurring in themid-phase of
differentiation. Early in differentiation, we observe increased fluctuation in
transcriptional activity whereas at the peak of gene expression, in early ery-
throblasts, transcription is relatively stable. Later during differentiation as α-
globin expression declines, we again observe more variability in transcription
within individual cells.We propose that the observed changes in transcriptional
behaviour may reflect changes in the stability of active transcriptional com-
partments as gene expression is regulated during differentiation.

Precise spatio-temporal transcriptional control of gene expression is
required to accurately produce developmental changes within a tissue
or organism.Mis-regulation of this process is frequently associatedwith
inherited and acquired genetic disease and highlights the importance of
understanding in detail how transcription is regulated. While bulk and
single-cell sequencing have advanced our understanding of transcrip-
tion during both normal and abnormal development, these methods
only provide a static view of transcription and mRNA abundance.

Observing real-time fluctuations in nascent transcription, in individual
cells throughout lineage specification and differentiation, is required to
fully understand the mechanistic details of gene expression1. Estab-
lishing when and how transient and dynamic gene activation occurs at
different times during lineage specification, differentiation, and devel-
opment is, therefore, of considerable current interest.

Methods allowing the visualisation of nascent transcription in
individual live cells2,3 have shown that activation of almost all genes

Received: 8 December 2021

Accepted: 7 October 2022

Check for updates

1MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK. 2Wolfson Imaging Centre, MRC
Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK. 3Chinese Academy of Medical Sciences
Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK. 4Present address: Nucleome Therapeutics
Ltd., BioEscalator, The Innovation Building, Old Road Campus, Oxford OX3 7FZ, UK. 5Present address: The Kennedy Institute Of Rheumatology, University of
Oxford,Old RoadCampus, OxfordOX3 7FY, UK. 6Present address: MRCCentre for RegenerativeMedicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
7These authors contributed equally: D. M. Jeziorska, E. A. J. Tunnacliffe. e-mail: doug.higgs@imm.ox.ac.uk

Nature Communications |         (2022) 13:6641 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3939-744X
http://orcid.org/0000-0003-3939-744X
http://orcid.org/0000-0003-3939-744X
http://orcid.org/0000-0003-3939-744X
http://orcid.org/0000-0003-3939-744X
http://orcid.org/0000-0002-8884-2047
http://orcid.org/0000-0002-8884-2047
http://orcid.org/0000-0002-8884-2047
http://orcid.org/0000-0002-8884-2047
http://orcid.org/0000-0002-8884-2047
http://orcid.org/0000-0003-4678-5168
http://orcid.org/0000-0003-4678-5168
http://orcid.org/0000-0003-4678-5168
http://orcid.org/0000-0003-4678-5168
http://orcid.org/0000-0003-4678-5168
http://orcid.org/0000-0002-1898-5878
http://orcid.org/0000-0002-1898-5878
http://orcid.org/0000-0002-1898-5878
http://orcid.org/0000-0002-1898-5878
http://orcid.org/0000-0002-1898-5878
http://orcid.org/0000-0003-1195-2608
http://orcid.org/0000-0003-1195-2608
http://orcid.org/0000-0003-1195-2608
http://orcid.org/0000-0003-1195-2608
http://orcid.org/0000-0003-1195-2608
http://orcid.org/0000-0003-3579-8705
http://orcid.org/0000-0003-3579-8705
http://orcid.org/0000-0003-3579-8705
http://orcid.org/0000-0003-3579-8705
http://orcid.org/0000-0003-3579-8705
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33977-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33977-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33977-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-33977-4&domain=pdf
mailto:doug.higgs@imm.ox.ac.uk


occurs in a pulsatile manner; a phenomenon known as transcriptional
bursting. The use of the orthogonalMS2 and PP7 RNA tagging systems
has demonstrated that numerous gene regulatory inputs are involved
in producing a variety of bursting patterns (reviewed in ref. 4).
Developmental changes in transcriptional bursting in live cells have
previously been studied, mostly in Drosophila5–7, Dictyostelium2,8,9, and
Caenorhabditis10, while equivalent studies have not been reported in
mammalian systems. To date, such studies have followed dynamic
transcriptional changes occurring over relatively short time periods
(1–2 h) or via sequential snapshots at different time points. This is
largely due to the difficulty of conducting live imaging experiments
over long time periods (up to days) without compromising cell viabi-
lity or causing photobleaching. Consequently, studying transcriptional
dynamics across the course of differentiation, with the sufficient
temporal resolution, is problematic, making the study of mammalian
development particularly challenging.

Haematopoietic stem cells undergo lineage specification and, fol-
lowing commitment and differentiation, mature via a trajectory of well-
defined morphological stages to produce ~1–2 million red blood cells
per second. This system is accurately recapitulated by various cell-
based systems11–14 and has established a general model for addressing
how mammalian gene expression is regulated during changes in dif-
ferentiation and development. Early in erythroid differentiation (here-
after referred to as erythropoiesis), a ~65 kb topologically associating
sub-domain (sub-TAD) containing the entire mouse α-globin locus
forms15,16. A cluster of 5 erythroid-specific enhancers is thereby brought
into closephysical proximity to theα-globinpromoters to regulate their
expression17. During the subsequent differentiation and maturation,
including ~4 cell divisions, globin gene transcription increases and
eventually, each erythroid cell accumulates up to ~10,000molecules of
α-globinRNA18. However, themechanismsbywhichdifferent regulatory
inputs associated with changes in transcriptional bursting control such
gene expression in single cells are unknown.

By combining PP7 tagging of RNA transcripts and developing “on-
microscope” cell staging, we were able to observe transcription
dynamics of the mouse α-globin gene in real-time throughout
sequential stages of erythropoiesis. We show that nascent α-globin
transcription reaches a maximum between the early and intermediate
stages of erythroid differentiation, preceding peak mRNA abundance
and haemoglobin synthesis, and before transcription significantly
declines at later stages of differentiation. The parameters used to
define transcription in live cells are summarized in Fig. 1. We find that
changes in RNAproduction are primarily determinedby the fraction of
time a gene spends in an active transcriptional state (ON fraction),
predominantly reflected in the burst frequency rather than the
amplitude of the burst. Despite general trends in increased nascent
transcription and ON fraction, we observed considerable variation in
the patterns of transcriptional activity, as measured by the Fano factor
(a measurement of variance/mean; Fig. 1), within and between cells at
all stages of erythroid differentiation. Erythroid cells showed maximal
transcriptional variability (also referred to as noise) both immediately
before and after the peak in nascent transcription. Increased variability
in these early and late cell stages is largely explained by the occurrence
of sporadic, high-amplitude bursts.

These findings suggest that the patterns of transcriptional burst-
ing change during differentiation, and that variability in transcription
is significantly reduced at the peak period of gene expression, perhaps
via the establishment of a more stable interaction between enhancers
and promoters within a transcriptional hub.

Results
Visualising α-globin transcription in live erythroid cells derived
from mouse embryonic stem cells
To understand the kinetics of gene expression in individual live cells as
they differentiate, we studied the α-globin genes (Fig. 2a), which are

switched on and off at specific stages of erythropoiesis. This locus
provides an extremely well-characterised model that has established
and illustrated many of the principles underlying mammalian gene
expression19. To study α-globin transcription in real-time, we used the
PP7 bacteriophage RNA labelling system20. We integrated a DNA
sequence encoding an array of 24 PP7 loops into the first exon of a
single allele of the Hba-a1 gene in mouse embryonic stem (mES) cells
using a recombinase-mediated cassette exchange (RMCE) strategy
(Supplementary Fig. 1A) to generate Hba-a1-PP7 cells. Correct integra-
tion was confirmed via Southern blot and DNA FISH experiments
(Supplementary Fig. 1B). To monitor changes in α-globin transcription
throughout erythroid development, we used an in vitro mES cell dif-
ferentiation system from which primitive erythroid cells are efficiently
formed within embryoid bodies (EBs) during a differentiation period of
up to 7 days14,21,22. In this system, at a population level, both mature and
nascent α-globin transcript levels increase significantly from day 4 to
day 7, alongside well-characterised changes in the expression of plur-
ipotency and erythroid marker genes14 (Fig. 2b, Supplementary Fig. 2).
Using this system, Hba-a1-PP7 mES cells differentiate normally along
the erythroid lineage as assessed by immunophenotyping and mor-
phology (Supplementary Fig. 1C, D) with no evidence of cellular stress.
Furthermore, these cells exhibit a normal ratio of α/β-globin RNA
expression (Fig. 2c) and chromatin accessibility of the locus (Fig. 2d).
Single-molecule RNA FISH (smFISH) experiments showed that tran-
scription from both modified and unmodified alleles was largely
unaffected by the introduction of PP7 repeats compared to wild-type
(WT) (Supplementary Fig. 3). Therefore, labelling the endogenousHba-
a1 α-globin gene using PP7 loops does not affect the activity of the
locus or progression of erythropoiesis in differentiating mES cells.

To detect Hba-a1 transcription in the Hba-a1-PP7 clone, a trans-
gene encoding a constitutively expressed PP7 coat protein fused to GFP
(PCP-GFP) was randomly integrated into the genomes of both WT and
Hba-a1-PP7 mES cells. Clones exhibiting medium levels of GFP expres-
sion and relatively uniform expression across the population were
chosen for analysis. These Hba-a1-PP7 + PP7 coat protein (PCP)-GFP
cells differentiate normally to EBs (Fig. 2d, Supplementary Fig. 1C, E).
We confirmed that a nuclear-localised transcription spot was only

Fig. 1 | Schematic illustrating measurable features of transcription dynamics.
Burst size changes are typically associated with promoter regulation, while burst
frequency (ON fraction) is typically associated with enhancer regulation. More (a)
and less (b) variable transcriptional activity traces of individual cells, with higher
and lower Fano factor values, respectively, are illustrated. For highly expressed
genes, burst frequency can be difficult to measure directly from spot intensity
traces. Measurement of ON fraction (similar to burst fraction in fixed cells35) in
individual cells can be used to infer changes in burst frequency.
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detected in differentiated cells containing PP7 loops integrated into
Hba-a1, and not in WT control cells (Supplementary Fig. 4A). These
transcriptional foci remain localised within the nucleus throughout the
time course of the experiment (Supplementary Fig. 4B, C). However, as
also observed by others in yeast23,24, some cells exhibited cytoplasmic
fluorescent foci. Such foci were excluded from further analysis (see
Methods). Initial time-lapse experiments showed that the pattern of
Hba-a1 activity within individual cells derived fromday 6 EBs is variable.
In the course of one hour (h), some cells displayed pulsatile gene
activity, and others showed amore stable, albeit still variable, pattern of
transcription (Fig. 2e). This showed that α-globinmay exhibit a range of
transcriptional bursting behaviours in erythropoiesis.

On-microscope staging of erythropoiesis
While numerous studies have investigated the dynamics of gene
transcription in mammalian cell culture25–31, live-cell studies of tran-
scription dynamics during mammalian differentiation have not been
reported. To study the kinetics of α-globin transcription at different
stages of erythropoiesis, we initially imaged transcription within indi-
vidual cells derived from day 5, 6, and 7 EBs for 1 h with 5minute (min)
frame intervals. We observed considerable variability in the dynamics
of α-globin transcription between live cells when simply stratifying by
days in culture (Supplementary Fig. 5). We hypothesised that this
variability was most likely due to the presence of a mixture of cells at

different stages of differentiation at each time point as a result of
unsynchronized differentiation within EBs.

This problem is commonly encountered in live imaging studies
of dynamic cell processes, and so, to overcome this, we stratified
erythroblasts obtained from these cultures using directly conjugated
antibodies32 that recognize CD71 and Ter119, known surface markers
of erythropoiesis whose levels change in a predictable manner dur-
ing erythroid differentiation11,12,33,34. Although erythroid cells can be
separated in various stages of differentiation using fluorescently
activated cell sorting (FACS), we observed reduced viability of sorted
cells in prolonged imaging experiments, potentially caused by an
extended period of sorting-associated stress. Therefore, we devel-
oped live-cell antibody staining to stage cells throughout ery-
thropoiesis directly under the microscope (see Supplementary Note
for further discussion).

We assessed the ability of fluorescence microscopy to enable
accurate cell staging during erythropoiesis. Measuring the levels of
CD71 and Ter119 in a single 3D image stack (Fig. 3a) from FACS-sorted
populations (F1–F6) enabled erythroid-cell staging similar to that
obtained using FACS (Fig. 3b; Supplementary Fig. 6A–C), giving access
to a full spectrum of erythroid differentiation states. May-Grünwald-
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Giemsa (MGG) staining of the same FACS-sorted populations (F1–F6)
showed CD71low/Ter119− cells (F1) were largely comprised of proery-
throblasts, while CD71high/Ter119high cells (F6) represented later ery-
throblast (poly/orthochromatic erythroblast) stages, with a smooth
progression in the changing proportion of cells within intermediate
populations (Fig. 3c, d and Supplementary Fig. 6D–F). Staining live
cells by directly conjugated antibodies targeting CD71 and Ter119,
therefore, enabled rapid staging of EB-derived erythroid cells into
sequential fractions of the differentiation continuum by fluorescence
microscopy.

Stratifying cells into progressive stages of differentiation
Having shown that live-cell antibody staining enabled on-microscope
identification of erythroblast stages, wenextwanted to simultaneously
monitor nascent transcription and the stage of differentiation of
individual erythroid cells. We imaged Hba-a1-PP7 transcription for 1 h
with 2.5min frame intervals and subsequently collected single stacks
of CD71 and Ter119 markers at day 6 of EB differentiation (Supple-
mentaryMovies 1–4). The time frame interval of 2.5min was optimised
to capture the majority of transcriptional bursts while minimising
photobleaching (Supplementary Fig. 7).

To enable the stratification of these cells into progressive differ-
entiation stages, we plotted cells onto a CD71/Ter119 axis (Supple-
mentary Fig. 8A). We then mapped each cell onto a one-dimensional
differentiation axis from the two-dimensionalCD71 andTer119 staining
pattern. To stage the cells, we used an empirically defined series of
curves that follow the changes in the intensity of CD71 and Ter119
markers through erythroid differentiation14 (Supplementary Fig. 8A).
Multiple curves were employed to accommodate the broad distribu-
tion of CD71 staining in Ter119low cells. The differentiation stage of each
cell was estimated from its location with respect to the nearest curve
(Supplementary Fig. 8B, C). Cells were then grouped into 6 stages of
erythroid differentiation (DS1–DS6) according to their positions along
this continuous differentiation axis (Supplementary Fig. 8D, E). This
showed a peak in the number of cells at intermediate stages of ery-
throid development (Supplementary Fig. 8D) consistent with previous
studies of EBs at day 6 of differentiation14.

To validate this cell stratification approach, we compared cells at
DS1–DS6 with conventionally defined erythroid precursors. We map-
ped cells from the FACS-sorted populations (F1–F6) imaged by
microscopy onto a differentiation axis in the sameway as for DS1–DS6
(Supplementary Fig. 8F) and aligned the two axes (see Methods) to
allow direct comparison between the two datasets. Subsequent
superimposition of the relative proportions of erythroblast stages
fromF1–F6 populations (Fig. 3c, d) onto histograms of their position in
differentiation (Supplementary Fig. 8Gi, ii) enabled us to approximate
thedifferentiation stageof cells inDS1–DS6 (Supplementary Fig. 8Giii).
Using these approaches, we established that DS1 represents proery-
throblasts, cells at stage 3–5 (DS3–DS5) broadly correspond to baso-
philic erythroblasts, and those at stage 2 (DS2) represent the transition
between these two. Stage 6 (DS6) represents a mixture of later ery-
throblast stages, including poly/orthochromatic erythroblasts and
some basophilic erythroblasts (Supplementary Fig. 8Giii). Although
not providing a perfect separation, our on-microscope staining
approach enabled live imaging of transcriptional dynamics of cells at
sequential stages of terminal erythropoiesis.

Variable patterns of transcription within individual cells are
seen throughout erythropoiesis
Stratifying individual cells into differentiation stages (DS1–DS6) using
on-microscope analysis (Supplementary Fig. 8D, E) enabled us to test
in further detail how α-globin transcription changes at specific points
in erythropoiesis. For each cell analysed, we determined the average
spot intensity and the fraction of time spent transcribing (ON fraction)
after setting an ON/OFF threshold. For individual bursts, we recorded

the duration and size (Fig. 1). Importantly, data were analysed using
multiple ON/OFF thresholds to ensure robust results. In general, we
found that cells at the mid-stages of erythropoiesis (DS3 and DS4)
exhibit the highest transcription spot intensity (DS1 vs. DS4 median of
mean spot intensities: 478.9 ± 506.9 vs 670.7 ± 626.7, respectively)
(Fig. 4a, Supplementary Fig. 9A, B) and more frequently reach higher
burst amplitude (a visual estimation of brighter colours in binned data
in Fig. 4b, and raw data Supplementary Fig. 9C) in individual cells. On
average, cells at stagesDS3 andDS4 are active 72–73%of the time (high
ON fraction), compared to only 43% and 33% for stages DS1 and DS6,
respectively (Fig. 4c, Supplementary Fig. 9D). These results are con-
sistent with experiments in fixed cells where, at any one time, 70–80%
of cells were found to be transcribing globin genes at the peak of
activation35,36. Together, these findings match the changes in mean
transcription levels (Fig. 4a) and ~90% of the variability in mean spot
intensity was explained by the fraction of time spent in the ON state
(Fig. 1, Supplementary Fig. 9Ei). It has previously been suggested,
based on smFISH analysis, that the fraction of cells transcribing at any
one time (called burst fraction35) is related to burst frequency. Our use
of the ON fraction is essentially a measurement of the burst fraction in
live cells. While the fraction of time a gene spends actively could also
be affected by the duration of bursts, measurement of individual
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bursts showed that this parameter is largely invariant across differ-
entiation (see below). Therefore, our data suggest that regulation of
burst frequency is the primary determinant of the average levels of α-
globin nascent transcription during erythropoiesis.

Having shown that average levels of nascent α-globin transcrip-
tion (mean spot intensity) change throughout differentiation, we next
wanted to determine whether the dynamic patterns of transcription
within individual cells also change throughout differentiation. Fluc-
tuations in transcriptional activity in individual cells, or “transcrip-
tional variability”, can be measured by the Fano factor (variance
divided by the mean, σ/μ), which is a measure of noise-to-signal ratio
(see example traces Supplementary Fig. 9F). Using this metric we were
able to assess intra-cellular variability in transcriptional activity of the
gene during the imaging period (Fig. 1). In general, we found that at
each stage of erythropoiesis, as gene expression increases, so does the
Fano factor (Supplementary Fig. 9Fi). However, we found marked
differences in the relationship between the Fano factor and the level of
transcription at different times in erythropoiesis. At the peak of tran-
scriptional activity in the population, the gradient of the linear
regression between transcription (mean spot intensity) and the Fano
factor within individual cells was around half that seen at the differ-
entiation stages flanking the peak (stage 2 =0.54 vs. stage 3 =0.28;
Fig. 4d, e, Supplementary Fig. 9G). Therefore, in the early stages of
erythropoiesis (DS1 and DS2), when the α-globin genes first become
transcriptionally active, the noise-to-signal ratio (Fano factor) is high
relative to that which would be predicted from the level of expression
(Supplementary Fig. 9F). Transcription then becomes less variable
when the genes are fully active (DS3 and DS4), and again becomes
increasingly variable as the genes are being switched off (DS5 andDS6)
(Fig. 4d, e). These changes in the patterns of transcription, consistent
with previous RNA FISH studies, suggest differences in the molecular
mechanisms of α-globin activation in single cells at each stage as they
progress through erythropoiesis.

Characterising transcriptional bursting in individual cells
To investigate potentialmechanistic differences in transcription at each
of these stages, we analysed the relationship between different para-
meters ofα-globin transcriptiondynamics (i.e. burst size and frequency,
see Fig. 1) within individual cells during erythropoiesis. Regulation of
these dynamics has generally been linked to the action of transcription
factors (TFs) at promoters and enhancers (Fig. 1). Burst size, which can
be broken down further into burst duration and burst amplitude, is
thought to be regulated via the promoter37,38. By contrast, burst fre-
quency is typically thought to be determined by enhancers (Fig. 1)35,39.

We asked whether changes in burst frequency were responsible
for the differences in variability during differentiation. We have shown
that, throughout differentiation, the ON fraction (which is related to
burst frequency35), is strongly correlated with mean gene activity
measured from the transcription spot intensity (Fig. 4a–c, Supple-
mentary Fig. 9Ei), suggesting that increasing burst frequency explains
overall levels of α-globin RNA synthesis as erythropoiesis proceeds. By
contrast, the ON fraction shows only a very weak correlation with
transcriptional variability (Supplementary Fig. 9Eii), suggesting that
burst frequency does not account for the observed differences in
variability at different stages of differentiation.

To examine changes in burst size during erythropoiesis, we first
measured the total transcriptional output (area under the curve
between spot intensity fluctuations and above theON threshold, Fig. 1)
relative to the total ON duration in individual cells over a period of
60min (Fig. 5a, b). This enabled us to assess differences in the average
burst amplitude for each cell since the total transcriptional output is a
product of the duration and amplitude. We estimated the average
relationship between duration and amplitude across all cells using
local regression and observed a clear inflection point in the gradient of
this relationship (Fig. 5a). A higher gradient means increased

transcriptional output for a given change in duration, and therefore
indicates a higher average burst amplitude. Cells lying to the right of
the inflection point, which is almost continuously active (whichwe call
‘high ON’ cells, active >89% of the time see Supplementary Note),
therefore have an increased burst size as a consequence of increased
burst amplitude. By contrast, ‘low ON’ cells to the left of the inflection
point (Fig. 5a; active <89% of the time) have much lower average burst
amplitude. In summary, thesefindings show thatburst frequency is not
primarily responsible for the observed differences in variability at
different stages of differentiation. However, the burst amplitude of
α-globin transcription appears to vary with the duration of time for
which the gene is active (Fig. 5a). This prompted us to examine if the
burst amplitudemay explain thedifferent degreesof variability thatwe
observe at different stages of erythropoiesis.
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Fig. 5 | Changes in transcriptional behaviour during erythropoiesis.
a Relationship between ON duration and total transcriptional output (area below
the curve and aboveON threshold for entire imaging period for each cell). LOWESS
regression outlines the local relationship between these variables. The inflection
point marks a step-change in the gradient of the regression. Cells above the
inflection point we call ‘High ON’ cells, while those below are ‘Low ON’. b Example
spot intensity traces for individual cellsmarked by coloured circles in a. Below each
panel, thick lines indicate when intensity traces for each cell are above ON
threshold (dotted lines). The measured ON duration and output (shaded area) are
given for each example cell. (i) ‘basal amplitude’ bursting; (ii) ‘high ON, high
amplitude’ bursting; (iii) ‘low ON, high amplitude’ bursting. c Calculated propor-
tions of cells with different bursting behaviours in b at each differentiation stage
(defined in Supplementary Fig. 10B, E).
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Coincident changes in burst amplitude and variability during
erythropoiesis
To further analyse the role of burst amplitude in generating varia-
bility in transcription throughout erythropoiesis, we examined
transcriptional burst traces in individual cells. While in most ‘low ON’
cells, expression fluctuates around a basal level of transcription
(Fig. 5bi), higher amplitude bursts were observed not only in ‘high
ON’ (Fig. 5bii) cells but also in a proportion of ‘low ON’ cells
(Fig. 5biii). We used the distinction between ‘high ON’ and ‘low ON’
cells (Fig. 5a) to quantify the proportion of cells exhibiting these
different transcriptional behaviours across the differentiation stages
(Fig. 5c, Supplementary Figs. 10 and 11 and Supplementary Note).
Most cells (>70%) display uniformly low burst amplitude throughout
the imaging period (“basal”, Fig. 5bi, ci, Supplementary Fig. 10E). The
majority of cells at all stages of differentiation fall into this category
(Fig. 5c, Supplementary Fig. 10E). A smaller proportion of cells
(6–20%) shownear-continuous activitywith regular, intense bursts of
transcriptional activity leading to increased transcriptional output
(Fig. 5bii, cii, Supplementary Fig. 10E). We define these cells as ‘high
ON, high amplitude’ cells. This pattern is most prominent at stages
DS3-4 of differentiation when α-globin transcription reaches max-
imal levels (Fig. 5c). In the remaining cells, we see sporadic, strong
bursts of transcription separated by periods of transcriptional
quiescence (‘low ON, high amplitude’ cells; Fig. 5biii, ciii, Supple-
mentary Fig. 10E). These are most prominent at stages DS1 and 2
(13–17% of cells), when transcription is starting, and also at stage DS5
(16% of cells) as the genes are being downregulated (Fig. 5c). A
summary of these data is presented in Supplementary Fig. 11C. We
observed that the proportion of these low ON cells exhibiting high-
amplitude bursts seemed to match the trends in transcriptional
variability across differentiation (Figs. 4e, 5c).

To test whether burst amplitude is indeed higher at stages DS2
and 5, when transcription is more sporadic, we characterised indivi-
dual bursts in cells at all differentiation stages (Supplementary
Fig. 12A). The duration of individual bursts was largely invariant across
the differentiation stages (median 4.3–5.6min) suggesting that this
parameter of burst control is unlikely to be extensively regulated
during erythropoiesis (Supplementary Fig. 12C). In general, high ON
cells have a higher burst size for a given burst duration (indicating a
higher burst amplitude) than low ON cells, in keeping with our earlier
analysis (Supplementary Fig. 12D, Fig. 5a). Furthermore, the relative
burst amplitude for lowONcells is highest indifferentiation stagesDS2
and DS5, matching the trends in noise during differentiation (Supple-
mentary Fig. 12E, F, Figs. 4e, 5c).

Together these data suggest that increased burst amplitude in
‘low ON’ cells (those exhibiting sporadic transcriptional bursts) could
be responsible for changes in transcriptional variability during ery-
thropoiesis. Most importantly, the time spent in an active transcrip-
tional state (ON fraction), most probably linked to enhancer-promoter
communication, appears to be the dominant control point forα-globin
transcription levels during differentiation.

Discussion
We have studied the real-time dynamics of transcription during the
process of differentiation in individual living cells. In contrast to pre-
vious studies, we have been able to determine the pattern of nascent
transcription that occurs over several days as mammalian stem cells
progress to fully differentiated mature cells accumulating large
amounts of mRNA and protein. The key to this was our ability to
accurately define erythroblast stages from a heterogeneous popula-
tion under the microscope using a combination of antibodies to two
well-characterised cell surface markers (CD71 and Ter119). This
enabled us to define the differentiation stage of individual cells and
correlate this with previously established morphological criteria. This,
in turn, allowed us to develop an approach that facilitated subsequent

analysis of live imaging of transcription dynamics throughout ery-
thropoiesis (Fig. 6).

The in vitro erythroidbody culture systemusedhere recapitulates
primitive (embryonic) erythropoiesis14, which is broadly similar to
definitive erythropoiesis in terms of its core regulatory modules40 and
temporal pattern of CD71/Ter119 expression41. Although we have
shown that changing levels of CD71 and Ter119 enable the visualisation
of maturing erythroblast stages in our system, this is still a relatively
coarse dissection of erythropoiesis. However, we have shown that the
use of live-cell antibody staining for staging cells directly under the
microscope facilitates live imaging of transcription at different stages
of differentiation. As opposed to imaging of fixed cells, this approach
allowed us to visualize the dynamic activity of a gene for an extended
period of time, in individual cells. Given the simplicity of themethod32,
this approachwill greatly extend and improve the applicationof single-
cell transcriptional dynamics in general (see Supplementary Note for
further discussion).

Studying α-globin expression at well-characterised stages of ery-
thropoiesis, we found that, consistent with fixed-cell imaging, nascent
transcription (asmeasured by spot intensity) reaches amaximumat the
intermediate stages of erythropoiesis. We also found that the main
factordriving the level ofα-globin transcription in anycell is the fraction
of time spent in the ON state, given that the peak in both average
transcriptions and ON fraction occurred in the mid-stages of differ-
entiation, with the average likelihood of a cell transcribing at this stage
being ~70% (Fig. 4, Supplementary Fig. 9). This pattern of α-globin
expression is consistent with previous fixed-cell RNA FISH experiments
describing transcription dynamics at several time points during blood
differentiation where 70–80% of cells were found to be transcribing
both α-globin and β-globin at the peak of activity35,36.
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Proerythroblast Basophilic Polychromatic Orthochromatic
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Intra-cellular
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Fig. 6 | Schematicof observedchanges in transcriptional output and variability
of α-globin as cells progress through erythropoiesis. Previous work has descri-
bed the sequential changes in the transcriptional, epigenetic, and chromosomal
architecture of the α-globin locus throughout differentiation19. From this work, we
find that nascent transcription is low in proerythroblast cells, peaks in the mid-
stages of terminal differentiation around the basophilic erythroblast stage, before
declining at later stages. This is primarily driven by the fraction of time for which
α-globin is active in cells (ON fraction). We speculate that this is likely due to
increased likelihood of contacts between the α-globin enhancers and promoters
during differentiation as we have recently described17. In contrast, the relative
variability of nascent transcription in individual cells is maximal either side of the
peak in overall activity, and lowest when the gene is most strongly active in the
population. This reduced intra-cellular variability in nascent transcription may
occur as a result of formation of a more stable transcriptional hub while the gene
activity is maximal in differentiation.
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The patterns of nascent transcription observed here in real-time
were not as different at each stage of differentiation as might have
been expected. Further stratification of erythroid differentiation
would be expected to reveal even greater differences in patterns of
nascent transcription. Each stage of differentiation included cells
with three broad categories of transcriptional bursting (Fig. 5b). In
most cells (>70%) at all stages of differentiation, we saw low levels of
transcriptional bursting (basal Fig. 5bi). In a small proportion of cells
(6–20%), we saw higher average levels of expression punctuated with
intense bursts of transcriptional activity (Fig. 5bii, high ON duration,
high-amplitude bursting). This is most marked at the intermediate
stage of differentiation (DS4) when spot intensity and the ON frac-
tion is at their maximum. Finally, in the remaining cells, we see
sporadic bursts of transcription separated by periods of transcrip-
tional quiescence (Fig. 5biii): these are most prominent at stages DS1
and DS2 (13–17% of cells), when transcription is starting, and also at
stage DS5 (16% of cells) as the genes are becoming inactive. This
suggests that between individual cells at similar stages of differ-
entiation, there is a considerable amount of variation in the patterns
of transcription. The data presented here suggest that in contrast to
analyses of cell populations, which suggest transcription and the
accumulation of RNA progress in a uniform manner during differ-
entiation, the underlying process of transcription is inherently vari-
able. Ultimately, such variability in transcription may bemitigated by
post-transcriptional mechanisms, not least by changes in the relative
stability of different mRNAs, leading to the accumulation of globin
RNA during erythropoiesis42.

Thedifferent patterns of transcriptional bursting observedhere in
real-time, as opposed to previous studies of fixed cells, suggest that
the molecular mechanisms underpinning α-globin transcriptional
activation may change during erythropoiesis. Based on previous stu-
dies of the transcriptional, epigenetic, and chromosomal architecture
of theα-globin locus (summarised in ref. 19), we considered how these
features may explain the changing dynamics of α-globin transcription.
In general, enhancers have been shown to primarily mediate changes
in the frequency and probability of transcriptional bursts29,35,38.
Enhancers most frequently influence transcription by coming into
close proximity to their cognate promoters43, although exactly how
this relates to transcriptional bursting is uncertain44,45. During ery-
thropoiesis, the α-globin enhancers come into increasingly frequent
proximity to the α-globin promoters17 within a self-interacting
domain15. The frequency of proximity increases in line with increased
globin transcription. We have shown here that burst frequency
appears to be the primary control point for α-globin transcription,
suggesting that activation of the promotersby the enhancers increases
the ON duration in early erythropoiesis.

It has previously been suggested that, for cells to increase tran-
scription from a gene such as α-globin, burst frequency is first
increased until a threshold is reached, above which burst size is pre-
ferentially increased46. Our data agree with this idea (Fig. 5), with ‘low
ON’ cells more likely to transcribe with basal amplitudewhile ‘highON’
cells are more likely to exhibit high-amplitude bursting. This suggests
that, in the case of α-globin, the threshold proposed by Dar et al.
occurs when the gene is almost continuously active, beyond which
burst frequency cannot be increased further. This switch from a lower
to a higher burst amplitude in high ON cells suggests α-globin can be
transcribed at multiple different initiation rates as measured by the
PP7 system. This phenomenon has been demonstrated for several
other genes4.

The decrease in α-globin ON duration at stages 5 and 6, could be
due to mechanisms associated with chromatin condensation as cells
mature into late erythroblast stages47. The mechanism behind the
increase in the likelihood of infrequent high-amplitude bursts and
transcriptional variability when the genes are not continuously active,
either side of the maximum α-globin activity in the middle of terminal

erythropoiesis is less clear. One component of this might be mediated
via chromatin accessibility to TFs increasing as erythropoiesis pro-
gresses and then decreasing as the erythroid nucleus condenses.
Recent imaging studies have highlighted TF dwell time as a key
determinant of burst size in both yeast andmammalian cells withmore
stable binding leading to increased output37,38. Furthermore, in keep-
ingwithour study, a single induciblegenewas shown to exhibit a range
of noise-mean (Fano factor) relationships in transcription, depending
on the concentration of a particular TF48. Recent work also suggests
that the formation of transcriptional compartments, containing a high
concentration of TFs may increase the efficiency of transcription49,50.
Our observations are, therefore, consistent with the transient forma-
tion of a TF-concentrating transcriptional compartment initially giving
rise to variable transcription followed by the formation of a more
stable compartment producing higher levels of transcription with less
transcriptional noise. Transcription again becomes variable as gene
expression decreases towards the end of differentiation.

In summary, this study introduces technical advances for imaging
of transcription dynamics during differentiation and development and
provides fundamental insights into how dynamic patterns of tran-
scription change during differentiation.

Methods
Constructs
The targeting construct to establish the acceptor site for RMCE at the
α-globin locus was generated in sequential steps using λ-red-mediated
recombineering. First, a Tn10-rpsL-gentR cassette flanked by AscI sites
was inserted in the place of the Hba-a1 gene sequence (coordinates
32,182,681–32,185,338 in the mouse reference genome, build mm9) in
a mouse RP22-289A22 BAC clone (BACPAC Resources Centre). Sub-
sequently, the integrated cassette and flanking 4 and 6.9 kilobase (kb)
blocks of adjacent BAC-derivedHba-a1 sequence was retrieved by gap
repair recombineering into a p15A minimal vector. Finally, the Tn10-
rpsL-gentR cassette was replaced in the p15 plasmidwith a pgk-Hyg-TK
cassette that contains a PGKpromoter and linked sequence encoding a
fused hygromycin phosphotransferase and HSV thymidine kinase
protein flanked by loxP and lox511 sites, amplified from a modified
ZRMCE vector (a kind gift from Ann Dean). Individual recombineering
and cloning steps were assessed by the antibiotic selection, PCR
amplification, restriction enzyme digestion, and sequencing. Thus, the
final p15A-A22BAC-loxP-pgk-HygTk-lox511 construct was generated
with 4 and 6.9 kb homology arms for gene targeting into the Hba-a1
locus in order to make the RMCE acceptor site.

The Hba-a1-PP7 construct to be used as the donor vector for
RMCE was generated in sequential steps using λ-red-mediated
recombineering. First, the region of Hba-a1 gene sequence was
retrieved from BAC clone RP22-289A22 equivalent to that sequence
replaced above (between coordinates 32,182,681 and 32,185,338) into a
p15A minimal vector at a position with flanking loxP and
lox511 sequences in the same relative orientations as in the RMCE
acceptor site. The 24 PP7 repeats were synthesized (GenScript) along
with Hba-a1 coding sequences between two KflI sites at the 5’ end of
the gene and subsequently exchanged by standard restriction enzyme
digestion and re-ligationwith the sequence in the abovep15 plasmid to
obtain the final p15A-loxP-Hba-a1-PP7-lox511 construct to be used as
the RMCE donor vector.

Cell culture
E14-TG2a.IV mouse embryonic stem (mES) cells were cultured as
described previously51–53. Briefly, mES cells were maintained in Glas-
gow’s MEM (Thermo Fisher Scientific, 21710025) supplemented with
foetal bovine serum, sodium pyruvate, non-essential amino acids, L-
glutamine, Penicillin-Streptomycin, beta-mercaptoethanol (all Thermo
Fisher Scientific) and leukaemia inhibitory factor (LIF, Cell Guidance
Systems, GFM200) on 0.1% gelatin-coated (Sigma, G1393) tissue-
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cultured treated plasticware. A detailed protocol on mES cell differ-
entiation to produce erythroid cells is available within ref. 14. Embry-
oid bodies were harvested and cells were released by trypsin-mediated
disaggregation. Cell pellets were visually assessed for haemoglobini-
sation. Cytospins were processed by May-Grünwald-Giemsa (MGG)
staining.

Generation of Hba-a1-PP7 cell line
E14-TG2a.IV mouse embryonic stem (ES) cells were electroporated
with the p15A-A22BAC-loxP-pgk-HygTk-lox511 construct to first create
the RMCE acceptor site in the place of theHba-a1 gene. Electroporated
ES cells were selected using hygromycin, and resistant clones were
analysed with Southern blotting and sequencing of PCR-amplified
recombined junctions to identify those arising from correct construct
integration by homologous recombination. Next, correctly integrated
ES cell clones were co-electroporated with the p15A-loxP-Hba-a1-PP7-
lox511 plasmid (the RMCE donor vector) and a plasmid expressing Cre
recombinase (pCAGGS-Cre-IRESpuro). Cells were selected using gan-
ciclovir to recover those that had undergone RMCE. A ganciclovir-
resistant clone was validated using Southern blot analysis with probes
located at the 5’ and 3’ ends of the locus and with probes corre-
sponding to PP7 repeats and the HygTk cassette. Targeting of a single
allele was confirmed by DNA FISH. The presence of PP7 repeats in the
locus was also confirmed using MinION Technology sequencing
(Oxford Nanopore Technologies). The Hba-a1-PP7 ES cell clone was
differentiated to EBs, and normal expression and chromatin landscape
of the locus was confirmed by RT-qPCR and ATAC-seq.

A pPGK-PCP-GFP-IRES-Hyg plasmid (a kind gift from Jonathan
Chubb) designed to constitutively express a PP7 coat protein (PCP)-
GFP transgene, was then transfected into unmodified ES cells and
into the Hba-a1-PP7 clone above. Cells were selected in hygromycin
to create stable transgene-expressing cell lines. Those cell lineswith a
medium and relatively uniform transgene expression level as asses-
sed by GFP fluorescence across the cell population were picked and
transgene integration was validated by Southern blot analysis.

Reverse transcription-quantitative real-time PCR
RNA was isolated from cells using TRI Reagent (T9424, Merck) before
DNase treatment using DNA-free DNA removal kit (AM1906, Thermo
Fisher Scientific). Superscript III First-Strand Synthesis SuperMix
(11752050, Thermo Fisher Scientific)was used to generate cDNA. qPCR
was performed using Fast SYBR Green Master Mix (4385616, Thermo
Fisher Scientific) with primers listed in Supplementary Table 1. Data
were first normalised to 18 S ribosomal RNA at each day of differ-
entiation and then to the maximum value for that gene within the
differentiation time series.

ATAC-seq
ATAC-seq was performed as previously described54. Embryoid bodies
were disaggregated at day 7 of differentiation, and CD71+ Ter119+

cells were selected for usingmagnetic column purification (Miltenyi).
75,000 cells were used per biological replicate. After tagmentation,
the DNA was eluted using MinElute columns (28206, Qiagen). PCR
indexing was performed using NEBNext High-Fidelity 2× PCR Master
Mix (M0541S, NEB) and sequenced using a NextSeq platform (Illu-
mina). After sequencing, read quality was assessed using FASTQC.
Data were then aligned to mm9 build of the mouse genome using a
custom-built pipeline, where PCR duplicates and ploidy regions
were removed, while mitochondrial DNA was excluded during
normalisation55 (code available from https://github.com/Hughes-
Genome-Group/NGseqBasic/releases).

DNA FISH
Targeting of PP7 loops to a single allele at the α-globin locus was
confirmed using RASER-FISH, a non-heat-denaturing method of DNA

FISH, as described previously15. Briefly, cycling cells were grown on
coverslips in BrdU/C-containing medium overnight to allow incor-
poration during DNA replication. Cells were fixed and permeabilised
before using exonuclease III (M0206L, NEB) digestion to enable
resection of a single DNA strand after treatment with Hoechst 33258
and 254 nm UV light to induce nicks in the BrdU/C-containing DNA
strand. Following overnight hybridisation at 37 °C and stringency
washes to remove mismatched and unbound probes, hybridised
probes, where applicable, were detected with appropriate antibodies
and nuclei were stained with DAPI before mounting. FISH probes used
were ULS550-labelled oligos (FLK 004, Kreatech Biotechnology)
against the PP7 repeat sequence (AATTGCCTAGAAAGGAGCAGACGA
TATGGCGTCGCTCCCT and AGCAGAGCATATGGGCTCGCTGGCTGC
AGTATTCCCGGGT)while the 3’α-globin locus probewas probe ‘pA’ as
described in Brown et al. (2018), which was labelled with digoxygenin
(DIG) and detected with sheep anti-DIG FITC (1:50 dilution,
11207741910, Roche, RRID: AB_514498) and rabbit anti-sheep FITC
antibodies (1:100 dilution, FI-6000, Vector Laboratories, RRID:
AB_2336218). Widefield fluorescence imaging was performed on a
DeltaVision Elite system (Applied Precision) equippedwith a 100x/1.40
NAUPLSAPOoil immersionobjective (Olympus), a CoolSnapHQ2CCD
camera (Photometrics). Filter sets were as follows: DAPI—excitation
390/18, emission 435/40, FITC—excitation 475/28, emission 525/45,
TRITC—excitation 542/27, emission 593/45. 12-bit image stacks were
acquired with a z-step of 150 nm giving a voxel size of
64.5 × 64.5 × 150nm.

smFISH
Single-molecule RNA FISH (smFISH) was performed as described
previously56 with some alterations. Oligonucleotide probes (see Sup-
plementary Table 2) were designed using Stellaris probe designer
(Biosearch Technologies), synthesized with 3’3NHC6-modification
(EurofinsGenomics), then pooled and conjugatedwith Alexa Fluor 594
NHS ester (Invitrogen). Cells were harvested at day 6 of EB differ-
entiation as described above, adhered onto 22 × 22mm glass, poly-L-
Lysine coated coverslips for 20min at 37 °C and then fixed in 4% (wt/
vol) paraformaldehyde for 20min at RT. Following fixation, coverslips
were washed in PBS and then permeabilized and stored at 4 °C in 70%
EtOH for a maximum of 2 weeks. After rehydration in 2× SSC with 10%
(vol/vol) formamide, cells were incubated with labelled probes at a
final concentration of 1 ng/µL in hybridisation buffer (2× SSC, 10%
Formamide (vol/vol), 10% dextran sulfate (wt/vol), 1mg/mL tRNA,
2mMRNase inhibitor (RVC complex, NEB), 0.2mg/mLBSA) in a humid
chamber at 30 °C overnight, before two washes in wash buffer for
30min at 30 °C and one in wash buffer with DAPI 0.5 µg/mL for 30min
at 30 °C. Coverslips were then mounted in Prolong Gold (Molecular
Probes) that was allowed to polymerise overnight at RT, in the dark,
before imaging. A widefield DeltaVision Elite system (Applied Preci-
sion) with ×100/1.40 NA UPLSAPO oil immersion objective (Olympus)
and CoolSnap HQ2 CCD camera (Photometrics) was used. An Insight
solid-state illumination (SSI) module (Applied Precision) was used to
excite samples, with DAPI (excitation 390/18, emission 435/40) and
TRITC (excitation 542/27, emission 593/45) filters used. Samples were
imaged with a z-step size of 200nm, giving a voxel size of
64.5 × 64.5 × 200 nm. Images were deconvolved using Huygens
deconvolution Classic Maximum Likelihood Estimation (Scientific
Volume Imaging B.V.).

Flow cytometry
Differentiation progressionwas typically assessed using anti-CD71 APC
(113819 Biolegend, RRID: AB_2728134) and anti-Ter119 PE (553673 BD
Biosciences, RRID: AB_394986) antibodies at a dilution of 1:10,000 and
1:100 in FACS buffer (1× PBS, 10% FBS), respectively. Hoechst 33258
(1:10,000dilution, H3569, ThermoFisher Scientific)was used as a Live/
Dead marker. Regular flow cytometry experiments were done on an
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Attune NxT Analyser (Thermo Fisher Scientific) while sorting experi-
ments were done using a FACS Aria Fusion sorter (100μm nozzle
width; BD Biosciences). FlowJo (v 10.7.1, FlowJo LLC) was used to
analyse flow cytometry data. Day 7 (chosen to ensure a full range of
differentiation states) EB cells for sorting were placed in a recovery
medium (phenol red-free IMDM base medium, 10% FBS, 1 U/ml ery-
thropoietin) for 1 h following disaggregation before being stained
(anti-CD71 Brilliant Violet 421, 1:5000dilution—113813Biolegend, RRID:
AB_10899739; anti-Ter119 Alexa Fluor 647, 1:1000 dilution—116218
Biolegend RRID: AB_528961) in FACS buffer and sorted based on CD71
and Ter119 signal (Fig. 3b, Supplementary Fig. 6B). A minimum of
250,000cells were collected for eachof 6 sorting gates,with half taken
for cytospins and the remainder used for fluorescence microscopy.
Data from cells imaged on a microscope were plotted on a biexpo-
nential scale (as is typically used for flow cytometry data) in Matlab
using the ‘logicleTransform’ function (https://uk.mathworks.com/
matlabcentral/fileexchange/68289-logicletransform-m). This transfor-
mation requires custom labelling of axes; the file in Supplementary
Software 1 is provided to enable this and, therefore, full recapitulation
of plots within the manuscript (using the data available in the
accompanying Source Data file).

Live imaging
Prior to imaging, embryoid bodies were disaggregated as described
above, and cells were placed in a recoverymedium for 4 h. Cells were
then passed through a cell strainer, counted, and 500,000 cells were
allowed to settle on poly-L-lysine coated 35mm high µ-Dishes (81158,
Ibidi) in fresh recovery medium. Cells were then imaged using a
488 nm laser (100mW) with 100ms exposure at 50% power every
10 s for 10min for short movies, or every 2.5min or 5min for 1 h for
long movies, with stacks of 30 z-slices sampled every 500 nm in the
z-plane. For measurement of CD71 and Ter119, cells were stained for
5min before imaging with directly conjugated anti-CD71 Brilliant
Violet 421 (1:5000 dilution) and anti-Ter119 Alexa Fluor 647 (1:1000
dilution) antibodies, respectively. Sodium azide was removed from
antibodies before use by diluting in 2ml PBS and re-concentrating
using a protein concentrator column (88521, Thermo Fisher Scien-
tific) as this is critical for live imaging experiments using antibodies32.
Multiple stacks were collected in parallel after 1 h of imaging using
405 nm (50mW), 488 nm, and 635 nm (30mW) lasers with 100ms
exposure and at 25%, 50%, and 50% power, respectively, as well as a
brightfield DIC image stack. FACS-sorted cells were imaged in the
same way but without 1 h time-lapse imaging. For nuclear labelling
experiments, cells were stained with SiR-DNA (SC007, Spirochrome)
at 1:1000 dilution for 1 h. Cells were imaged at 37 °C on an inverted
Zeiss Cell Observer Spinning Disc system with a CSU-X1M 500 Dual
Cam spinning disc unit (Yokogawa), a ×1.2 magnification camera
C-mount adapter, an Orca-Flash4.0 v2 sCMOS camera (Hamamatsu),
and a Plan APO ×63/1.40 NA Oil M27 objective (Carl Zeiss AG) with a
final voxel size of 86 × 86 × 500 nm. ZEN Blue 2 software (Zeiss) was
used to capture images. Five independent live imaging experiments
were performed as described above.

Image analysis
Fluorescence microscopy images were uploaded to OMERO57 for sto-
rage and initial cell identification. Healthy erythrocyte lineage cells
were manually identified by morphology: spherical cells lacking
obvious blebs, an intact nucleus (mitotic cells were excluded), and
absence of intra-cellular staining with Ter119 antibody (as this was
identified as a marker of dead or dying cells). Cell centroids were
marked using the ‘point’ROI tool in OMERO.iviewer, and locations and
images were downloaded from the OMERO server using the Matlab
(Mathworks) API.

Manual quantification of spot intensities fromcells at day 5, 6, or 7
of embryoid body culture (Supplementary Fig. 5) was done using

Imaris (version 9.1.2, Oxford Instruments). The intensity of transcrip-
tion spots was quantified using the ‘Spots’ tool and calculated as the
mean of pixels within an ovoid shape of 1 × 1 × 3μm in size (x,y,z
dimensions, respectively), centred on the transcription spot. The
nuclear background was measured within a region of size 3 × 3 × 3μm
within the nucleus at the same z-position but situated away from the
transcription spot in the xy plane. Corrected spot intensity was cal-
culated by subtraction of background values from measured spot
intensity. If no spot was easily visible (if the gene was inactive), mea-
surements were taken from the coordinates of the last visible spot.
Kymographs of SiR-DNA-labelled Hba-a1-PP7 nuclei were created in
Imaris by first creating a surface for individual channels using simple
thresholding. Cells maintaining active transcription spots throughout
the imaging period were chosen for ease of visualisation. Single 2D
image slices (xy dimensions) from each time point, centred on the
transcription spot in the z-dimension, were assembled into a 3D image
stack with time as the third dimension in order to demonstrate con-
tinued nuclear localisation of transcription spots during imaging.

Automated identification and quantification of transcription spot
intensities were done in Matlab (version R2014a), largely as described
previously58, with minor modifications. All other analyses in Matlab
were done using version R2020a. In brief, since we did not use a
marker such as a fluorescent histone tag to outline the nucleus and
given that some MCP-GFP foci were visible in the cytoplasm of some
cells, we generated a pseudo-nuclear marker by exploiting the relative
depletion of GFP signal in the nucleus compared to the cytoplasm
(Supplementary Fig. 4B). Cells were analysed individually by using
centroid locations to crop the original images, and a simple two-step k-
means clustering algorithm was used to segment first the cell bound-
ary, and then thenuclear boundarywithin this. This estimate of nuclear
position was then passed with GFP image stacks to a spot detection
algorithm58 for automatic detection andmeasurement of transcription
spots. Manual inspection and correction of spot locations were done,
where necessary, to ensure high accuracy. This semi-supervised
automated analysis showed good agreement with manual quantifica-
tion of spot intensities in initial experiments (Supplementary Fig. 5).
Measurement of CD71 and Ter119 marker levels was done by similarly
cropping and segmenting a cell mask from the GFP channel, before
taking the mean value in each channel of all pixels within the mask,
minus an estimated background (iteratively smoothed from pixels
outside the cell mask until no change is observed, as described
previously58) for each cell. Cell size was approximated by taking the
area of the cellmask in the central z-slice (centroid of themask in the z-
dimension) for each cell. Given the highly spherical nature of early
erythroid cells, this proved to be a sufficiently good estimate for our
studies.

For smFISH experiments, cells were scored manually for the
number of activeα-globin genes by counting the number of bright foci
within the nucleus. Only cells for which the entire nucleus was con-
tainedwithin the image stackwere counted. Cells inwhich twonascent
transcription foci from a duplicated chromosome were visible (two
signals in close proximity) were counted as a single active locus.

MGG cytospins were scored manually according to changes in
size, colouration and texture of nuclei and cytoplasmof cells using the
‘Cell Counter’ plugin in Fiji59 after image names were randomised.
Erythroblast counts for each image were then unblinded and collated
according to FACS-sorted populations (F1–F6).

Data analysis
Short movies (10min; Supplementary Fig. 7) were used to establish
an optimum frame rate for longer-term imaging of transcription
dynamics (1 h). Transcription spot intensities were extracted from
images as described above. The data were then subsampled at
progressively increasing frame intervals for each cell to simulate
the use of different experimental imaging sampling intervals. We
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wanted to establish the optimum sampling interval by which to
capture all transcriptional bursting events while also minimising
light input and associatedphotobleaching. Todo this, we estimated
the amount of information loss which occurs with increasing frame
rate by calculating the root-mean-squared error (RMSE) when
comparing the raw data (sampled every 10 s, yraw) to subsampled
data ðysubÞ for each cell:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
1 ysub � yraw
� �2

n

s

ð1Þ

A lower RMSE indicates a reduced error (information loss) of
subsampled compared to raw data. A sampling interval of 150 s was
found to be a good compromise to minimise both light input and
information loss.

Differentiation progression for cells imaged by microscopy was
estimated using the measured intensities of CD71 and Ter119 staining
(Supplementary Fig. 8). Cells undergoing embryoid body differentia-
tion exhibit known changes in the levels of these two markers during
differentiation progression, from CD71−/Ter119−, to CD71+/Ter119−, to
CD71+/Ter119+14 (Supplementary Fig. 6B). We used this knowledge to
measure the progression of each cell through this differentiation
space. To do this, we empirically defined a series of curves that fol-
lowed this pattern of changes in CD71 and Ter119 markers. Several
curves were used in order to capture the full range of potential tra-
jectories through this CD71/Ter119 axis, given that a range of CD71
intensities were observed in Ter119low cells. These curves were then
discretised into 10,000 equally spaced points using the ‘interparc’
function in Matlab. We measured the distance between each cell and
every point on these curves, found the point closest to each cell, and
calculated the proportional distance of that point along its curve as a
fraction of 1. This value was taken as a proxy for the extent of differ-
entiation progression for each cell.

Having defined a series of differentiation stages (DS1–DS6) from
time-lapse imaging long movies, we wanted to estimate which ery-
throblast stages were most likely to represent these stages. To do this,
we used microscopy measurements of CD71 and Ter119 intensity to
estimate differentiation progression (as above) of day 7 EB FACS-sorted
cell populations (F1–F6) (Fig. 3b, Supplementary Fig. 8F). Unsorted day
7 cells (Supplementary Fig. 6B) were also included to ensure enough
cells to enable comparison to the long movie time-lapse dataset. To
allow comparison between the time-lapse dataset and the FACS-sorted
dataset, we used regular fluctuations in the size of cells along the dif-
ferentiation axes (from 0 to 1) to align the datasets in differentiation.
Following this alignment, the coordinates of cells in differentiation
shouldbeequivalent forDS1–DS6andF1–F6.Given thatweassessed the
identity of erythroblast stages in F1–F6 (Fig. 3c, d), and now knowing
where these cells were on the differentiation axis, we could approx-
imate the cell identity in time-lapse imaging differentiation stages.
Firstly, the distribution of FACS-sorted cells on the differentiation axes
was plotted separately for each sorted population F1–F6 (Supplemen-
tary Fig. 8Gi). Secondly, the known proportions of erythroblast stages
for each of these populations as assessed by morphology analysis
(Fig. 3c, Supplementary Fig. 8Gii) were overlaid onto these histogram
distributions from least to most differentiated (proerythroblast, baso-
philic erythroblast, polychromatic erythroblast, orthochromatic ery-
throblast; Supplementary Fig. 8Giii). Finally, using the aligned
coordinates of the time-lapse imaging differentiation stages (e.g. DS1 at
0 to ~0.1) on this differentiation axis, we assigned erythroblast cell
identity to eachof thesegroupsby visual assessmentof the erythroblast
stages across F1–F6 at these coordinates (Supplementary Fig. 8Giii).

Confidence intervals for the median of mean spot intensities for
cells at each differentiation stage (DS1–DS6) were calculated using
bootstrapping (Supplementary Fig. 9B). For each differentiation stage,
the distribution of mean spot intensity values was randomly sampled

with replacement (n = 31, to match the lowest number of cells in any
differentiation stage, DS1) 10,000 times and median values deter-
mined. Limits of 95% confidence intervals were calculated as the 2.5th
and 97.5th percentiles of this bootstrapped distribution.

The threshold above which α-globin was considered to be active
or ‘ON’ was defined empirically by visual inspection of images to be
350 arbitrary intensity units. However, at each analysis stage, care was
taken to test a number of thresholds around this value to ensure that
conclusions were consistent regardless of which ON/OFF threshold
was chosen. TheON fractionwas calculated for each cell as the fraction
of time the gene spends in the ON state as a proportion of the total
imaging period. To more precisely estimate time spent above the ON/
OFF threshold, we used linear interpolation of individual transcription
traces. Duration of individual bursts was measured similarly, but only
‘complete’ bursting events were included, where both the start and
end of a burst were below the ON/OFF threshold. The transcriptional
output of an individual cell was calculated as the area above the ON/
OFF threshold and below the fluctuating (interpolated) transcriptional
activity trace summed across the imaging period. This is effectively the
summedburst size for all bursting events (including those ‘incomplete’
bursts). Burst size for individual bursts was measured similarly but
again only included ‘complete’ bursting events. Calculating the num-
ber of complete bursts identified across a large range of ON/OFF
thresholds demonstrated a peak centred around our empirically
defined intensity threshold of 350, further supporting the use of this
threshold estimate (Supplementary Fig. 12B).

In order to categorise cells according to differing transcrip-
tional behaviours, we first distinguished cells according to the
length of time spent in the active state (ON duration). We did this
based on the relationship between the ON duration and transcrip-
tional output, for which we used robust LOWESS local regression
(‘rlowess’ in Matlab ‘smooth’ function) to model. A clear inflection
point suggested differences in burst amplitude at high ON duration
(see Supplementary Note), and we, therefore, categorised cells as
‘High ON’ or ‘Low ON’ according to whether their ON duration was
above or below this inflection point, respectively (Fig. 5a). We then
categorised cells according to the amplitude of transcriptional
bursts displayed over the imaging period as we noticed many cells
consistently showed a low or ‘basal’ level of burst amplitude while
some exhibited much higher burst amplitude (Fig. 5b). We again
used the relationship between ON duration and transcriptional
output to define a threshold above which cells would be classed as
exhibiting ‘high amplitude bursting’ on average across the imaging
period (Supplementary Fig. 10B). Firstly, we estimated the rela-
tionshipbetweenONduration and transcriptional output for abasal
amplitude bursting regime by extrapolating from the local regres-
sion described above for LowON cells only, as themajority of these
cells exhibited basal amplitude bursting (yellow curve, Supple-
mentary Fig. 10Bi). Fitting a quadratic curve to the Low ON regres-
siondatapointsallowedustoestimatethetranscriptionaloutput for
basal amplitude bursting in High ON cells. To categorise cells
according to whether they exhibit ‘basal’ or ‘high’ amplitude burst-
ing,we thenwanted tomeasurehowfareachcell deviates frombasal
amplitude bursting, in terms of its transcriptional output. If the
transcriptional output of a particular cell is very close towhatwould
be expected from basal amplitude bursting with a certain ON dura-
tion, then this deviation would be small. In contrast, for cells exhi-
biting high-amplitude bursting, and therefore with a high
transcriptional output for a particular ON duration, this deviation
wouldbemuchhigher.Tomoreeasilydefineasingle thresholdvalue
with which to identify high-amplitude bursting cells, we first calcu-
latedtheresidualbetweenthetranscriptionaloutputofeachcelland
the basal amplitude estimate of this value for the sameON duration
(Supplementary Fig. 10Bii). We then normalised these residuals by
the ON duration, to account for the increased time available for
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higher ON cells to deviate from a basal amplitude bursting regime
(Supplementary Fig. 10Biii). We call thismetric the ‘basal amplitude
deviation score’. Finally, we used the distribution of the basal
amplitude deviation scores to set the high-amplitude bursting
threshold. In LowON cells, as expected, we found a close-to-normal
distribution of deviation scores around a value of 0 (meaning the
deviation of most of these cells from a ‘basal amplitude bursting’
behaviour was small), with a skewed tail of high-amplitude bursting
cells. Setting the threshold as one standard deviation away from the
median enabled the convenient separation of basal and high-
amplitude cells. Cells were then classed into three groups by using
the High/Low ON and High/Basal amplitude thresholds to define
three different transcriptional behaviours: 1. Basal amplitude (both
Low and High ON), 2. High ON, High amplitude, 3. Low ON, High
amplitude. A similar analysis was performed using the Fano factor
instead of the basal amplitude deviation score (Supplementary
Fig. 10D),butwefoundthis tobe lesssuitedtothetaskofsegregating
cells by burst amplitude (see Supplementary Note).

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. The ATAC-seq data generated in this
study have been deposited in the Gene Expression Omnibus (GEO)
database under accession code GSE189474. All image data associated
with this work are stored in OMERO and will be available from the
authors upon request. Source data are provided with this paper.

Code availability
Image analysis was primarily done using published Matlab code58 (see
http://www.ucl.ac.uk/lmcb/sites/default/files/Corrigan2016MatlabFiles.
zip). ATAC-seq data were aligned to the mouse mm9 genome (UCSC
Genome Browser, July 2007 NCBI37/mm9) using a custom analysis
pipeline55 (available from https://github.com/Hughes-Genome-Group/
NGseqBasic/releases). All other code for this work is available from the
authors upon request.
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