443 research outputs found

    Tectonic modeling of Konya-Beysehir Region (Turkey) using cellular neural networks

    Get PDF
    In this paper, to separate regional-residual anomaly maps and to detect borders of buried geological bodies, we applied the Cellular Neural Network (CNN) approach to gravity and magnetic anomaly maps. CNN is a stochastic image processing technique, based optimization of templates, which imply relationships of neighborhood pixels in 2-Dimensional (2D) potential anomalies. Here, CNN performance in geophysics, tested by various synthetic examples and the results are compared to classical methods such as boundary analysis and second vertical derivatives. After we obtained satisfactory results in synthetic models, we applied CNN to Bouguer anomaly map of Konya-Beysehir Region, which has complex tectonic structure with various fault combinations. We evaluated CNN outputs and 2D/3D models, which are constructed using forward and inversion methods. Then we presented a new tectonic structure of Konya-Beysehir Region. We have denoted (F1, F2, …, F7) and (Konya1, Konya2) faults according to our evaluations of CNN outputs. Thus, we have concluded that CNN is a compromising stochastic image processing technique in geophysics

    Bidding structure, market efficiency and persistence in a multi-time tariff setting

    Get PDF
    The purpose of this study is to examine the fractal dynamics of day ahead electricity prices by using parametric and semi parametric approaches for each time zone in a multi-time tariff setting in the framework of bidding strategies, market efficiency and persistence of exogenous shocks. We find that that electricity prices have long term correlation structure for the first and third time zones indicating that market participants bid hyperbolically and not at their marginal costs, market is not weak form efficient at these hours and exogenous shocks to change the mean level of prices will have permanent effect and be effective. On the other hand, for the second time zone we find that price series does not exhibit long term memory. This finding suggests the weak form efficiency of the market in these hours and that market participants bid at their marginal costs. Furthermore this indicates that exogenous shocks will have temporary effect on electricity prices in these hours. These findings constitute an important foundation for policy makers and market participants to develop appropriate electricity price forecasting tools, market monitoring indexes and to conduct ex-ante impact assessment. © 2015 Elsevier B.V

    Human brain anatomy reflects separable genetic and environmental components of socioeconomic status

    Full text link
    Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES–gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy

    Network analysis shows decreased ipsilesional structural connectivity in glioma patients

    Get PDF
    Tumors and their location distinctly alter both local and global brain connectivity within the ipsilesional hemisphere of glioma patients. Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks, which reflect the impairment of information transfer across different regions of a network.Peer reviewe

    A comparison among PCNL, Miniperc and Ultraminiperc for lower calyceal stones between 1 and 2 cm: A prospective, comparative, multicenter and randomised study

    Get PDF
    Background: Conventional Percutaneous Lithotripsy (PCNL) has been an effective, successful and easy approach for especially > 1 cm sized calyceal stones however risks of complications and nephron loss are inevitable. Our aim is to compare the efficacy and safety of PCNL, MiniPerc (MP) and UltraMiniPerc (UMP) for lower calyceal stones between 1 and 2 cm with a multicenter prospective randomized study. Methods: Between January 2015 and June 2018, 132 consecutive patients with single lower calyceal stone were enrolled. Patients were randomized in three groups; A: PCNL; B: MP; C: UMP. 44 patients for the Group A, 47 for Group B and 41 for Group C. Exclusion criterias were the presence of coagulation impairments, age of < 18 or > 75, presence of infection or serious comorbidities. Patients were controlled with computerized tomography scan after 3 months. A negative CT or an asymptomatic patient with stone fragments < 3 mm size were the criteria to assess the stone-free status. Patient characteristics, stone free rates (SFR) s, complications and re-treatment rates were analyzed. Results: The mean stone size were 16.38, 16.82 and 15.23 mm respectively in Group A, B and C(p = 0.34). The overall SFR was significantly higher in Group A (86.3%) and B (82.9%) as compared to Group C (78%)(p < 0.05). The re-treatment rate was significantly higher in Group C (12.1%) and complication rates was higher in Group A (13.6%) as compared to others(p < 0.05). The hospitalization was significantly shorter in Group C compared to Group A (p = 0.04). Conclusions: PCNL and MP showed higher efficacy than UMP to obtain a better SFR. Auxiliary and re-treatment rates were higher in UMP. On the other hand for such this kind of stones PCNL had more complications. Overall evaluation favors MP as a better indication in stones 1-2 cm size

    Reactive Molecular Dynamics study on the first steps of DNA-damage by free hydroxyl radicals

    Full text link
    We employ a large scale molecular simulation based on bond-order ReaxFF to simulate the chemical reaction and study the damage to a large fragment of DNA-molecule in the solution by ionizing radiation. We illustrate that the randomly distributed clusters of diatomic OH-radicals that are primary products of megavoltage ionizing radiation in water-based systems are the main source of hydrogen-abstraction as well as formation of carbonyl- and hydroxyl-groups in the sugar-moiety that create holes in the sugar-rings. These holes grow up slowly between DNA-bases and DNA-backbone and the damage collectively propagate to DNA single and double strand break.Comment: 6 pages and 8 figures. movies and simulations are available at: http://qmsimulator.wordpress.com

    Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    Get PDF
    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2–8 cm2, without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research

    Picking on the family: disrupting android malware triage by forcing misclassification

    Get PDF
    Machine learning classification algorithms are widely applied to different malware analysis problems because of their proven abilities to learn from examples and perform relatively well with little human input. Use cases include the labelling of malicious samples according to families during triage of suspected malware. However, automated algorithms are vulnerable to attacks. An attacker could carefully manipulate the sample to force the algorithm to produce a particular output. In this paper we discuss one such attack on Android malware classifiers. We design and implement a prototype tool, called IagoDroid, that takes as input a malware sample and a target family, and modifies the sample to cause it to be classified as belonging to this family while preserving its original semantics. Our technique relies on a search process that generates variants of the original sample without modifying their semantics. We tested IagoDroid against RevealDroid, a recent, open source, Android malware classifier based on a variety of static features. IagoDroid successfully forces misclassification for 28 of the 29 representative malware families present in the DREBIN dataset. Remarkably, it does so by modifying just a single feature of the original malware. On average, it finds the first evasive sample in the first search iteration, and converges to a 100% evasive population within 4 iterations. Finally, we introduce RevealDroid*, a more robust classifier that implements several techniques proposed in other adversarial learning domains. Our experiments suggest that RevealDroid* can correctly detect up to 99% of the variants generated by IagoDroid

    Distributed Medical Image Analysis and Diagnosis through Crowd-Sourced Games: A Malaria Case Study

    Get PDF
    In this work we investigate whether the innate visual recognition and learning capabilities of untrained humans can be used in conducting reliable microscopic analysis of biomedical samples toward diagnosis. For this purpose, we designed entertaining digital games that are interfaced with artificial learning and processing back-ends to demonstrate that in the case of binary medical diagnostics decisions (e.g., infected vs. uninfected), with the use of crowd-sourced games it is possible to approach the accuracy of medical experts in making such diagnoses. Specifically, using non-expert gamers we report diagnosis of malaria infected red blood cells with an accuracy that is within 1.25% of the diagnostics decisions made by a trained medical professional
    • …
    corecore