1,888 research outputs found

    Paper Session II-B - High Efficiency Hyperspectral Imager for the Terrestrial and Atmospheric Multispectral Explorer

    Get PDF
    The Terrestrial and Atmospheric MultiSpectral Explorer1 (TAMSE) is a Space Shuttle Small Self- Contained Payload “Get-Away Special” (GAS) project, led by Principal Investigator Rolando Branly, and including remote sensing and microgravity experiments from Florida Space Institute member schools. One of these experiments is the High-Efficiency HyperSpectral Imager (HEHSI). The HEHSI project will provide a low-cost spaceflight demonstration of a novel type of imaging spectrometer with exceptional light gathering ability. HEHSI is also a demonstration of what can be achieved in space with a modest budget: 15KfromtheFloridaSpaceGrantConsortium(FSGC)and 15K from the Florida Space Grant Consortium (FSGC) and 10K from the Florida Space Institute (FSI). Education and workforce development are important goals of the project, with all of the mechanical, electronics, and software design and testing being carried out by an interdisciplinary team of FSI students. These six students, who are about to graduate with bachelor’s degrees in engineering (three computer, one electrical, and two aerospace), have worked on the project and received course credit for two semesters. The matching funds from FSI support the involvement of the mentor for the HEHSI experiment, Glenn Sellar, who is also responsible for the optical design. Environmental testing (thermal and vibration) will be carried out by the students at KSC’s Physical Testing Laboratory, under a cooperative Space Act Agreement. As this instrument is the first remote sensing payload constructed in Florida (to the authors knowledge), it also serves as a seed for diversification of the space industry in Florida. An overview of the project is presented in this paper, including the science objectives, and the optical, mechanical, electrical, and software designs

    Addressing epistemic injustice in HIV research: a call for reporting guidelines on meaningful community engagement

    Get PDF
    Introduction Despite the widely recognized ethical and practical benefits of community engagement in HIV research, epistemic injustice persists within the field. Namely, the knowledge held by communities disproportionately affected by HIV is systematically afforded less credibility than that of more privileged academic researchers. In order to illustrate what this looks like in practice, we synthesized the extent of reporting on community engagement within recent high-impact HIV intervention research papers. However, we also posit that the HIV research sector has the potential to devise and showcase world-leading examples of equitable research-community partnerships and suggest actionable key steps to achieving this goal. Discussion In the absence of reporting requirements within the publishing process, it is difficult to infer whether and how the community have been consulted in the design, implementation, analysis and/or interpretation of findings. As an illustrative exercise, we offer a rapid synthesis of the extent of reporting on community engagement in HIV research from 2017 to 2019, which highlighted sporadic and very low rates of reporting of community engagement in recent high-impact HIV intervention studies. Of note is that none of the included studies reported on community engagement through all stages of the research process. There were also discrepancies in how community involvement was reported. We provide three actionable recommendations to enhance reporting on community engagement in HIV research: (1) community-led organizations, researchers and scientific journals should band together to develop, publish and require adherence to standardized guidelines for reporting on community involvement in HIV research; (2) research funders should (continue to) require details about how relevant communities have been engaged prior to the submission of funding requests; and (3) researchers should take proactive measures to describe their engagement with community organizations in a clear and transparent manner. Conclusions There is a clear and urgent need for guidelines that facilitate transparent and consistent reporting on community engagement in HIV intervention research. Without standardized reporting requirements and accountability mechanisms within the research sector, the extent of meaningful community engagement cannot be established and may remain a catchphrase rather than reality

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore