68 research outputs found

    Using artificial intelligence techniques for strategy generation in the Commons game

    Get PDF
    In this paper, we consider the use of artificial intelligence techniques to aid in discovery of winning strategies for the Commons Game (CG). The game represents a common scenario in which multiple parties share the use of a self-replenishing resource. The resource deteriorates quickly if used indiscriminately. If used responsibly, however, the resource thrives. We consider the scenario one player uses hill climbing or particle swarm optimization to select the course of action, while the remaining N − 1 players use a fixed probability vector. We show that hill climbing and particle swarm optimization consistently generate winning strategies

    From Lurker to Active Participant

    Get PDF
    The original publication is available from www.springerlink.com. Sloep, P. B., & Kester, L. (2009). From Lurker to Active Participant. In R. Koper (Ed)., Learning Network Services for Professional Development (pp. 17-26). Berlin, Germany: Springer Verlag.In this chapter we will specifically go into the question of how prospective Learning Network users may be convinced of these benefits, for that is likely to be the necessary condition for their active participation in any Learning Network. Their question would be ‘Why should I participate?’, this chapter inventories an-swers to that question, which are then translated into a few guidelines for those contemplating to set up a particular, topic-bound Learning Network. Two kinds of answer are distinguished. Proximate answers, which affect the decision to partici-pate here and now; and ultimate answers, which motivate participation, but only in the long run, after the decision to participate has already been taken. Both are im-portant, the former to persuade people to participate, the latter to persuade people to keep participating. Before going into them, we’ll introduce a concrete example to add some realism to the discussion.The work on this publication has been sponsored in part by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Project management between will and representation

    Get PDF
    This article challenges some deep-rooted assumptions of project management. Inspired by the work of the German philosopher, Arthur Schopenhauer, it calls for looking at projects through two complementary lenses: one that accounts for cognitive and representational aspects and one that accounts for material and volitional aspects. Understanding the many ways in which these aspects transpire and interact in projects sheds new light on project organizations, as imperfect and fragile representations that chase a shifting nexus of intractable human, social, technical, and material processes. This, in turn, can bring about a new grasp of notions such as value,\ud knowledge, complexity, and risk

    Compliance with global enviromental policy

    No full text
    corecore