61 research outputs found

    Observation for spoilage in fish and beef in a daily simulated local market style of Southwestern, Nigeria

    Full text link
    The degree of spoilage of fish and beef in a daily simulated market style of southwest, Nigeria was determined by Trimethylamine (TMA) levels in each sample using the standard pictrate technique. 100g of each of the three different parts of a bull (liver, meaty and fatty tissues) and fresh African cat fish (Clarias gariepinus) (liver, meaty portion and head) were purchased twice a week for five weeks from the abattoir and Oja-Oba market in Akure respectively. The samples were subjected to ambient temperature and their degree of spoilage was assessed after 3 hours, 6 hours and 9 hours of purchase. The results showed that, there was no significant difference (P≥ 0.05) in the effect of time (hours) on TMA concentration in different parts of the fish and bull samples, though, the mean concentration of TMA in the fish samples increased with time. However, the degree of spoilage is slower in the bull compared to the fish samples but higher in the late evening (9 hours). Hence, buying and selling of beef in the late evening should be discouraged to avoid consumption of unwholesome meat with high TMA concentrations, while fish should be stored-frozen and sold in deep freezers

    Prostaglandin levels and semen quality in male partners of infertile couples in Ile-Ife, Nigeria

    Get PDF
    Objective: To provide data on semen prostaglandins in Nigerian men and relate this to fertility potential as provided by semen analysis results.Design: Prospective studySetting: Infertility Clinic of Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, NigeriaSubjects: All male partners of infertile couples who reported for male factor test at the clinic and agreed to be part of the study by completing informed consent forms.Results: The study revealed a high percentage of men with sub-normal semen .Range of PGF2a in the subjects was 0.15-11.05ƒÊg/ml with a mean of 2.77} 0.23 ƒÊg/ml while that of PGE was 21.8- 652.0 ƒÊg/mlwith a mean of 248.79} 13.88 ƒÊg/ml. Among men with normal semen profile, mean PGF2a and PGE levels are 2.1} 0.32 ƒÊg/ml and 325.1} 28.3 ƒÊg/ml respectively while that in semen of men with subnormal semen are 3.0} 0.28 ƒÊg/ml and 225.1 } 15.1ƒÊg/ml respectively. Despite the wide range of PG values in all the groups, significant differences(P<0.05) were found to exist between the PG values of men in the normal and sub normal semen groups. Significant differences were also found when theywere grouped according to sperm count alone. However, differences observed when in the grouping according to other individual semen characteristics are not significant.Conclusion: The wide range of PG values obtained in all the groups make it difficult to make far reaching conclusions as to the relationship between PG levels and semen quality. Further research is desirable in establishing the role of PGs in sperm function

    Prostaglandin levels and semen quality in male partners of infertile couples in Ile-Ife, Nigeria

    Get PDF
    The study revealed a high percentage of men with sub-normal semen .Range of PGF2á in the subjects was 0.15-11.05µg/ml with a mean of 2.77± 0.23 µg/ml while that of PGE was 21.8- 652.0 µg/ml with a mean of 248.79± 13.88 µg/ml. Among men with normal semen profile, mean PGF2á and PGE levels are 2.1± 0.32 µg/ml and 325.1± 28.3 µg/ml respectively while that in semen of men with subnormal semen are 3.0± 0.28 µg/ml and 225.1 ± 15.1µg/ml respectively. Despite the wide range of PG values in all the groups, significant differences(P<0.05) were found to exist between the PG values of men in the normal and sub normal semen groups. Significant differences were also found when they were grouped according to sperm count alone. However, differences observed when in the grouping according to other individual semen characteristics are not significant. Conclusion: The wide range of PG values obtained in all the groups make it difficult to make far reaching conclusions as to the relationship between PG levels and semen quality. Further research is desirable in establishing the role of PGs in sperm function

    Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation

    Get PDF
    One of the techniques that has been recently identified for dealing with multi-user interference (MUI) in future communications systems is base station (BS) cooperation or joint processing. However, perfect MUI cancellation with this technique demands severe synchronization requirements, perfect and global channel state information (CSI), and an increased backhaul and signaling overhead. In this paper, we consider a more realistic layout with the aim of mitigating the MUI, where only local CSI is available at the BSs. Due to synchronization inaccuracies and errors in the channel estimation, the system becomes partially asynchronous. In the downlink of wideband code division multiple access based systems, this asynchronism stands for the loss of the orthogonality of the spreading codes allocated to users and thus, for an increase in the MUI level of the system. In this contribution, we propose a framework for mitigating the MUI which builds in three main steps: definition of a cooperation area based on the channel characteristics, statistical modeling of the average MUI power experienced by each user and a specific spreading code allocation scheme for users served with joint processing. This code allocation assigns spreading codes to users in such a way that minimum average cross-correlation between active users can be achieved. Interestingly, these steps can be performed with a limited amount of extra feedback from the user's side

    Concurrent evaluation of cytokines improves the accuracy of antibodies against Mycobacterium tuberculosis antigens in the diagnosis of active tuberculosis.

    Get PDF
    BACKGROUND: Antibodies against mycobacterial proteins are highly specific, but lack sensitivity, whereas cytokines have been shown to be sensitive but not very specific in the diagnosis of tuberculosis (TB). We assessed combinations between antibodies and cytokines for diagnosing TB. METHODS: Immuoglubulin (Ig) A and IgM antibody titres against selected mycobacterial antigens including Apa, NarL, Rv3019c, PstS1, LAM, "Kit 1" (MTP64 and Tpx)", and "Kit 2" (MPT64, Tpx and 19 kDa) were evaluated by ELISA in plasma samples obtained from individuals under clinical suspicion for TB. Combinations between the antibody titres and previously published cytokine responses in the same participants were assessed for diagnosing active TB. RESULTS: Antibody responses were more promising when used in combination (AUC of 0.80), when all seven antibodies were combined. When anti-"Kit 1"-IgA levels were combined with five host cytokine biomarkers, the AUC increased to 97% (92-100%) with a sensitivity of 95% (95% CI, 73-100%), and specificity of 88.5% (95% CI, 68.7-97%) achieved after leave-one-out cross validation. CONCLUSION: When used in combination, IgA titres measured with ELISA against multiple Mycobacterium tuberculosis antigens may be useful in the diagnosis of TB. However, diagnostic accuracy may be improved if the antibodies are used in combination with cytokines

    Homeostatic Regulation of Salmonella-Induced Mucosal Inflammation and Injury by IL-23

    Get PDF
    IL-12 and IL-23 regulate innate and adaptive immunity to microbial pathogens through influencing the expression of IFN-γ, IL-17, and IL-22. Herein we define the roles of IL-12 and IL-23 in regulating host resistance and intestinal inflammation during acute Salmonella infection. We find that IL-23 alone is dispensable for protection against systemic spread of bacteria, but synergizes with IL-12 for optimal protection. IL-12 promotes the production of IFN-γ by NK cells, which is required for resistance against Salmonella and also for induction of intestinal inflammation and epithelial injury. In contrast, IL-23 controls the severity of inflammation by inhibiting IL-12A expression, reducing IFN-γ and preventing excessive mucosal injury. Our studies demonstrate that IL-23 is a homeostatic regulator of IL-12-dependent, IFN-γ-mediated intestinal inflammation

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe

    The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis

    Get PDF
    Background A growing body of research identifies the harmful effects that adverse childhood experiences (ACEs; occurring during childhood or adolescence; eg, child maltreatment or exposure to domestic violence) have on health throughout life. Studies have quantified such effects for individual ACEs. However, ACEs frequently co-occur and no synthesis of findings from studies measuring the effect of multiple ACE types has been done. Methods In this systematic review and meta-analysis, we searched five electronic databases for cross-sectional, case-control, or cohort studies published up to May 6, 2016, reporting risks of health outcomes, consisting of substance use, sexual health, mental health, weight and physical exercise, violence, and physical health status and conditions, associated with multiple ACEs. We selected articles that presented risk estimates for individuals with at least four ACEs compared with those with none for outcomes with sufficient data for meta-analysis (at least four populations). Included studies also focused on adults aged at least 18 years with a sample size of at least 100. We excluded studies based on high-risk or clinical populations. We extracted data from published reports. We calculated pooled odds ratios (ORs) using a random-effects model. Findings Of 11 621 references identified by the search, 37 included studies provided risk estimates for 23 outcomes, with a total of 253 719 participants. Individuals with at least four ACEs were at increased risk of all health outcomes compared with individuals with no ACEs. Associations were weak or modest for physical inactivity, overweight or obesity, and diabetes (ORs of less than two); moderate for smoking, heavy alcohol use, poor self-rated health, cancer, heart disease, and respiratory disease (ORs of two to three), strong for sexual risk taking, mental ill health, and problematic alcohol use (ORs of more than three to six), and strongest for problematic drug use and interpersonal and self-directed violence (ORs of more than seven). We identified considerable heterogeneity (I 2 of > 75%) between estimates for almost half of the outcomes. Interpretation To have multiple ACEs is a major risk factor for many health conditions. The outcomes most strongly associated with multiple ACEs represent ACE risks for the next generation (eg, violence, mental illness, and substance use). To sustain improvements in public health requires a shift in focus to include prevention of ACEs, resilience building, and ACE-informed service provision. The Sustainable Development Goals provide a global platform to reduce ACEs and their life-course effect on health. Funding Public Health Wales. © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licens

    Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge

    Get PDF
    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion
    corecore