31 research outputs found
Re-engaging with the past: recapitulation of encoding operations during episodic retrieval
Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection
Functional Organization of the Human Medial Temporal Lobe
INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion
How Reliable Are Visual Context Effects in the Parahippocampal Place Area?
The parahippocampal place area (PPA) is a region of human cortex that responds more strongly to visual scenes (e.g., landscapes or cityscapes) than to other visual stimuli. It has been proposed that the primary function of the PPA is encoding of contextual information about object co-occurrence. Supporting this context hypothesis are reports that the PPA responds more strongly to strong-context than to weak-context objects and more strongly to famous faces (for which contextual associations are available) than to nonfamous faces. We reexamined the reliability of these 2 effects by scanning subjects with functional magnetic resonance imaging while they viewed strong- and weak-context objects, scrambled versions of these objects, and famous and nonfamous faces. âContextualâ effects for objects were observed to be reliable in the PPA at slow presentation rates but not at faster presentation rates intended to discourage scene imagery. We were unable to replicate the earlier finding of preferential PPA response to famous versus nonfamous faces. These results are difficult to reconcile with the hypothesis that the PPA encodes contextual associations but are consistent with a competing hypothesis that the PPA encodes scenic layout
Gray and white matter correlates of navigational ability in humans
Contains fulltext :
127798.pdf (Publisherâs version ) (Closed access)Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy.12 p