442 research outputs found

    Internalization of lectins in neuronal GERL.

    Full text link

    Creating a model of diseased artery damage and failure from healthy porcine aorta

    Get PDF
    Large quantities of diseased tissue are required in the research and development of new generations of medical devices, for example for use in physical testing. However, these are difficult to obtain. In contrast, porcine arteries are readily available as they are regarded as waste. Therefore, reliable means of creating from porcine tissue physical models of diseased human tissue that emulate well the associated mechanical changes would be valuable. To this end, we studied the effect on mechanical response of treating porcine thoracic aorta with collagenase, elastase and glutaraldehyde. The alterations in mechanical and failure properties were assessed via uniaxial tension testing. A constitutive model composed of the Gasser-Ogden-Holzapfel model, for elastic response, and a continuum damage model, for the failure, was also employed to provide a further basis for comparison (Calvo and Pena, 2006 and Gasser et al., 2006). For the concentrations used here it was found that: collagenase treated samples showed decreased fracture stress in the axial direction only; elastase treated samples showed increased fracture stress in the circumferential direction only; and glutaraldehyde samples showed no change in either direction. With respect to the proposed constitutive model, both collagenase and elastase had a strong effect on the fibre-related terms. The model more closely captured the tissue response in the circumferential direction, due to the smoother and sharper transition from damage initiation to complete failure in this direction. Finally, comparison of the results with those of tensile tests on diseased tissues suggests that these treatments indeed provide a basis for creation of physical models of diseased arteries

    Location-specific immunodetection of cocaine on banknotes

    Get PDF
    A novel in-gel bioanalytical immunodetection method has been developed to determine both the presence and the location of cocaine on the surface of banknotes. The cocaine was ‘fixed’ to the surface of the banknote via a coating of a polyacrylamide gel matrix. Immunostaining of the immobilised cocaine on the banknote surface was performed using an anti-cocaine primary antibody, either pre-labelled with horse radish peroxidase (HRP) or in conjunction with a HRP-labelled secondary antibody. Visualisation of the location of the cocaine was achieved through chemiluminescence imaging of the banknote following application of a chemiluminescent substrate. The novel method was applied to the detection of cocaine on partial and whole banknote samples obtained from general circulation. Newly minted banknotes, with or without spiked cocaine, were used as positive and negative controls, respectively. The results obtained, for the first time, demonstrate the successful location-specific immunostaining of cocaine on banknotes. A preliminary analysis of six UK banknotes, obtained from general circulation, suggests that cocaine can be present at variable locations across the whole of the banknote

    Self-assembled nanogel made of mannan : synthesis and characterization

    Get PDF
    Amphiphilic mannan (mannan-C16) was synthesized by the Michael addition of hydrophobic 1-hexadecanethiol (C16) to hydroxyethyl methacrylated mannan (mannan-HEMA). Mannan-C16 formed nanosized aggregates in water by selfassembly via the hydrophobic interaction among C16molecules as confirmed by hydrogen nuclearmagnetic resonance (1H NMR), fluorescence spectroscopy, cryo-field emission scanning electron microscopy (cryo-FESEM), and dynamic light scattering (DLS). The mannan-C16 critical aggregation concentration (cac), calculated by fluorescence spectroscopy with Nile red and pyrene, ranged between 0.04 and 0.02mg/mL depending on the polymer degree of substitution ofC16 relative to methacrylated groups. Cryo-FESEM micrographs revealed that mannan-C16 formed irregular spherical macromolecular micelles, in this work designated as nanogels, with diameters ranging between 100 and 500 nm. The influence of the polymer degree of substitution, DSHEMA andDSC16, on the nanogel size and zeta potential was studied byDLS at different pH values and ionic strength and as a function of mannan-C16 and urea concentrations. Under all tested conditions, the nanogel was negatively charged with a zeta potential close to zero. Mannan-C16 with higher DSHEMA and DSC16 values formed larger nanogels andwere also less stable over a 6month storage period and at concentrations close to the cac.When exposed to solutions of different pH and aggressive conditions of ionic strength and urea concentration, the size of mannan-C16 varied to some extent but was always in the nanoscale range.International Iberian Nanotechnology Laboratory (INL)Fundação para a CiĂȘncia e a Tecnologia (FCT

    Increased Immune Complexes of Hypocretin Autoantibodies in Narcolepsy

    Get PDF
    International audienceBACKGROUND: Hypocretin peptides participate in the regulation of sleep-wake cycle while deficiency in hypocretin signaling and loss of hypocretin neurons are causative for narcolepsy-cataplexy. However, the mechanism responsible for alteration of the hypocretin system in narcolepsy-cataplexy and its relevance to other central hypersomnias remain unknown. Here we studied whether central hypersomnias can be associated with autoantibodies reacting with hypocretin-1 peptide present as immune complexes. METHODOLOGY: Serum levels of free and dissociated (total) autoantibodies reacting with hypocretin-1 peptide were measured by enzyme-linked immunosorbent assay and analyzed with regard to clinical parameters in 82 subjects with narcolepsy-cataplexy, narcolepsy without cataplexy or idiopathic hypersomnia and were compared to 25 healthy controls. PRINCIPAL FINDINGS: Serum levels of total but not free IgG autoantibodies against hypocretin-1 were increased in narcolepsy-cataplexy. Increased levels of complexed IgG autoantibodies against hypocretin-1 were found in all patients groups with a further increase in narcolepsy-cataplexy. Levels of total IgM hypocretin-1 autoantibodies were also elevated in all groups of patients. Increased levels of anti-idiotypic IgM autoantibodies reacting with hypocretin-1 IgG autoantibodies affinity purified from sera of subjects with narcolepsy-cataplexy were found in all three groups of patients. Disease duration correlated negatively with serum levels of hypocretin-1 IgG and IgM autoantibodies and with anti-idiotypic IgM autoantibodies. CONCLUSION: Central hypersomnias and particularly narcolepsy-cataplexy are characterized by higher serum levels of autoantibodies directed against hypocretin-1 which are present as immune complexes most likely with anti-idiotypic autoantibodies suggesting their relevance to the mechanism of sleep-wake cycle regulation

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    Serum tumor markers in pediatric osteosarcoma: a summary review

    Get PDF
    Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM
    • 

    corecore