4 research outputs found

    A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

    Get PDF
    In this paper we study a simple non-local semilinear parabolic equation with Neumann boundary condition. We give local existence result and prove global existence for small initial data. A natural non increasing in time energy is associated to this equation. We prove that the solution blows up at finite time TT if and only if its energy is negative at some time before TT. The proof of this result is based on a Gamma-convergence technique

    Lagrangian schemes for Wasserstein Gradient Flows

    No full text
    This chapter reviews different numerical methods for specific examples of Wasserstein gradient flows: we focus on nonlinear Fokker-Planck equations, but also discuss discretizations of the parabolic-elliptic Keller-Segel model and of the fourth order thin film equation. The methods under review are of Lagrangian nature, that is, the numerical approximations trace the characteristics of the underlying transport equation rather than solving the evolution equation for the mass density directly. The two main approaches are based on integrating the equation for the Lagrangian maps on the one hand, and on solution of coupled ODEs for individual mass particles on the other hand

    C. Literaturwissenschaft.

    No full text
    corecore