22 research outputs found

    alpha-nucleus potentials for the neutron-deficient p nuclei

    Full text link
    alpha-nucleus potentials are one important ingredient for the understanding of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical gamma-process where these p nuclei are produced by a series of (gamma,n), (gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus potential at the astrophysically relevant sub-Coulomb energies which is derived from the analysis of alpha decay data and from a previously established systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    The 106Cd(α, α)106Cd elastic scattering in a wide energy range for γ process studies

    Get PDF
    Date of Acceptance: 15/04/2015Alpha elastic scattering angular distributions of the 106Cd(α, α)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the α + nucleus optical potential parameter sets. Furthermore, the new high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized α + nucleus optical potential in a wide energy region ranging from ELab=27.0MeV down to 16.1 MeV.The potentials under study are a basic prerequisite for the prediction of α-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical γ process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.Peer reviewe

    Long range effects on the optical model of 6He around the Coulomb barrier

    Full text link
    We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the Sao Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He+208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some aspects of the optical potential of weakly bound systems, such as the dispersion relation and the long range (attractive and absorptive) mechanisms.Comment: Accepted in Nucl. Phys. A; 26 pages, 8 figures, 6 tables

    Photon-induced Nucleosynthesis: Current Problems and Experimental Approaches

    Full text link
    Photon-induced reactions play a key role in the nucleosynthesis of rare neutron-deficient p-nuclei. The paper focuses on (gamma,alpha), (gamma,p), and (gamma,n) reactions which define the corresponding p-process path. The relation between stellar reaction rates and laboratory cross sections is analyzed for photon-induced reactions and their inverse capture reactions to evaluate various experimental approaches. An improved version S_C(E) of the astrophysical S-factor is suggested which is based on the Coulomb wave functions. S_C(E) avoids the apparent energy dependence which is otherwise obtained for capture reactions on heavy nuclei. It is found that a special type of synchrotron radiation available at SPring-8 that mimics stellar blackbody radiation at billions of Kelvin is a promising tool for future experiments. By using the blackbody synchrotron radiation, sufficient event rates for (gamma,alpha) and (gamma,p) reactions in the p-process path can be expected. These experiments will provide data to improve the nuclear parameters involved in the statistical model and thus reduce the uncertainties of nucleosynthesis calculations.Comment: 13 pages, 6 figures, EPJA, accepte

    Improved dd+4^4He potentials by inversion, the tensor force and validity of the double folding model

    Full text link
    Improved potential solutions are presented for the inverse scattering problem for dd+4^4He data. The input for the inversions includes both the data of recent phase shift analyses and phase shifts from RGM coupled-channel calculations based on the NN Minnesota force. The combined calculations provide a more reliable estimate of the odd-even splitting of the potentials than previously found, suggesting a rather moderate role for this splitting in deuteron-nucleus scattering generally. The approximate parity-independence of the deuteron optical potentials is shown to arise from the nontrivial interference between antisymmetrization and channel coupling to the deuteron breakup channels. A further comparison of the empirical potentials established here and the double folding potential derived from the M3Y effective NN force (with the appropriate normalisation factor) reveals strong similarities. This result supports the application of the double folding model, combined with a small Majorana component, to the description even of such a loosely bound projectile as the deuteron. In turn, support is given for the application of iterative-perturbative inversion in combination with the double folding model to study fine details of the nucleus-nucleus potential. A dd-4^4He tensor potential is also derived to reproduce correctly the negative 6^6Li quadrupole moment and the D-state asymptotic constant.Comment: 22 pages, 12 figures, in Revte

    Cross section predictions for hydrostatic and explosive burning

    Get PDF
    We review different models used for reactions involved in nuclear astrophysics. The reaction rate is defined for resonant as well as for non-resonant processes. For low-density nuclei, we describe the DWBA method, the potential model, the R-matrix method, and microscopic cluster models. The statistical model is developed for high-level densities. Details of calculations in the low- and high-density regimes are illustrated with new results concerning transfer reactions and level densities.Comment: 25 pages, 3 figures, invited article to appear in Nucl. Phys.

    Radial reefing method for accelerated and controlled parachute opening

    No full text

    Study of the 90^{90}Zr(p⃗,α\vec{p},\alpha)87^{87}Y reaction at 22 MeV

    No full text
    The (p⃗,α\vec{p},\alpha) reaction on 90^{90}Zr has been studied in a high resolution experiment at an incident proton energy of 22 MeV. The cross section and asymmetry angular distributions for transitions to 36 levels of 87^{87}Y with an excitation energy up to 3 MeV have been measured. DWBA analyses of experimental angular distributions, using either Woods-Saxon or Double Folded potentials for the exit channel, have been done, allowing either the confirmation of previous spin and parity values or the assignment of new spin and parity to a large number of states. The structure of low lying states of 87^{87}Y has been studied in the framework of the shell model, using the OXBASH code. With the interaction PMM90 reasonable agreement is obtained for part of the negative parity spectrum
    corecore