Photon-induced reactions play a key role in the nucleosynthesis of rare
neutron-deficient p-nuclei. The paper focuses on (gamma,alpha), (gamma,p), and
(gamma,n) reactions which define the corresponding p-process path. The relation
between stellar reaction rates and laboratory cross sections is analyzed for
photon-induced reactions and their inverse capture reactions to evaluate
various experimental approaches. An improved version S_C(E) of the
astrophysical S-factor is suggested which is based on the Coulomb wave
functions. S_C(E) avoids the apparent energy dependence which is otherwise
obtained for capture reactions on heavy nuclei. It is found that a special type
of synchrotron radiation available at SPring-8 that mimics stellar blackbody
radiation at billions of Kelvin is a promising tool for future experiments. By
using the blackbody synchrotron radiation, sufficient event rates for
(gamma,alpha) and (gamma,p) reactions in the p-process path can be expected.
These experiments will provide data to improve the nuclear parameters involved
in the statistical model and thus reduce the uncertainties of nucleosynthesis
calculations.Comment: 13 pages, 6 figures, EPJA, accepte