415 research outputs found

    Inconsistency in 9 mm bullets : correlation of jacket thickness to post-impact geometry measured with non-destructive X-ray computed tomography

    Get PDF
    Fundamental to any ballistic armour standard is the reference projectile to be defeated. Typically, for certification purposes, a consistent and symmetrical bullet geometry is assumed, however variations in bullet jacket dimensions can have far reaching consequences. Traditionally, characteristics and internal dimensions have been analysed by physically sectioning bullets – an approach which is of restricted scope and which precludes subsequent ballistic assessment. The use of a non-destructive X-ray computed tomography (CT) method has been demonstrated and validated Kumar et al., 2011); the authors now apply this technique to correlate bullet impact response with jacket thickness variations. A set of 20 bullets (9 mm DM11) were selected for comparison and an image-based analysis method was employed to map jacket thickness and determine the centre of gravity of each specimen. Both intra- and inter-bullet variations were investigated, with thickness variations of the order of 200 um commonly found along the length of all bullets and angular variations of up to 50 um in some. The bullets were subsequently impacted against a rigid flat plate under controlled conditions (observed on a high-speed video camera) and the resulting deformed projectiles were re-analysed. The results of the experiments demonstrate a marked difference in ballistic performance between bullets from different manufacturers and an asymmetric thinning of the jacket is observed in regions of pre-impact weakness. The conclusions are relevant for future soft armour standards and provide important quantitative data for numerical model correlation and development. The implications of the findings of the work on the reliability and repeatability of the industry standard V50 ballistic test are also discussed

    Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018

    Full text link
    As part of our study of the magnetic fields of AGN we have recently observed a large sample of blazars with the Very Long Baseline Array. Here we report the discovery of a striking two-component jet in the source 1055+018, consisting of an inner spine with a transverse magnetic field, and a fragmentary but distinct boundary layer with a longitudinal magnetic field. The polarization distribution in the spine strongly supports shocked-jet models while that in the boundary layer suggests interaction with the surrounding medium. This behavior suggests a new way to understand the differing polarization properties of strong- and weak-lined blazars.Comment: LaTex; 10 pages; 6 figures; reference fix; to appear in ApJL, 518, 1999 June 2

    Adequacy of Maternal Iron Status Protects against Behavioral, Neuroanatomical, and Growth Deficits in Fetal Alcohol Spectrum Disorders

    Get PDF
    Fetal alcohol spectrum disorders (FASD) are the leading non-genetic cause of neurodevelopmental disability in children. Although alcohol is clearly teratogenic, environmental factors such as gravidity and socioeconomic status significantly modify individual FASD risk despite equivalent alcohol intake. An explanation for this variability could inform FASD prevention. Here we show that the most common nutritional deficiency of pregnancy, iron deficiency without anemia (ID), is a potent and synergistic modifier of FASD risk. Using an established rat model of third trimester-equivalent binge drinking, we show that ID significantly interacts with alcohol to impair postnatal somatic growth, associative learning, and white matter formation, as compared with either insult separately. For the associative learning and myelination deficits, the ID-alcohol interaction was synergistic and the deficits persisted even after the offsprings’ iron status had normalized. Importantly, the observed deficits in the ID-alcohol animals comprise key diagnostic criteria of FASD. Other neurobehaviors were normal, showing the ID-alcohol interaction was selective and did not reflect a generalized malnutrition. Importantly ID worsened FASD outcome even though the mothers lacked overt anemia; thus diagnostics that emphasize hematological markers will not identify pregnancies at-risk. This is the first direct demonstration that, as suggested by clinical studies, maternal iron status has a unique influence upon FASD outcome. While alcohol is unquestionably teratogenic, this ID-alcohol interaction likely represents a significant portion of FASD diagnoses because ID is more common in alcohol-abusing pregnancies than generally appreciated. Iron status may also underlie the associations between FASD and parity or socioeconomic status. We propose that increased attention to normalizing maternal iron status will substantially improve FASD outcome, even if maternal alcohol abuse continues. These findings offer novel insights into how alcohol damages the developing brain

    Support with caveats: advocates’ views of the Theory of Formal Discipline as a reason for the study of advanced mathematics

    Get PDF
    The Theory of Formal Discipline (TFD) suggests that studying mathematics improves general thinking skills. Empirical evidence for the TFD is sparse, yet it is cited in policy reports as a justification for the importance of mathematics in school curricula. The study reported in this article investigated the extent to which influential UK advocates for mathematics agree with the TFD and their views on the arguments and evidence that surround it. Quantitative and qualitative analysis of data from structured interviews revealed four themes: broad endorsement of the TFD; reference to supportive employment data; the possibilities that mathematics education might not always effectively develop reasoning and that study of other subjects might have similar effects; and concerns about causality and the extent of the evidence base. We conclude that advocates broadly support the TFD despite being aware of its limitations

    VLBA polarimetric observations of the CSS quasar 3C147

    Full text link
    Aims. We report new VLBA polarimetric observations of the compact steep-spectrum (CSS) quasar 3C147 (B0538+498) at 5 and 8.4GHz. Methods. By using multifrequency VLBA observations, we derived milliarcsecond-resolution images of the total intensity, polarisation, and rotation measure distributions, by combining our new observations with archival data. Results. The source shows a one-sided structure, with a compact region, and a component extending about 200 mas to the south-west. The compact region is resolved into two main components with polarised emission, a complex rotation measure distribution, and a magnetic field dominated by components perpendicular to the source axis. Conclusions. By considering all the available data, we examine the possible location of the core component, and discuss two possible interpretations of the observed structure of this source: core-jet and lobe-hot spot. Further observations to unambiguously determine the location of the core would help distinguish between the two possibilities discussed here.Comment: 11 pages, 12 figure

    Resonant Kelvin-Helmholtz modes in sheared relativistic flows

    Get PDF
    Qualitatively new aspects of the (linear and non-linear) stability of sheared relativistic (slab) jets are analyzed. The linear problem has been solved for a wide range of jet models well inside the ultrarelativistic domain (flow Lorentz factors up to 20; specific internal energies ≈60c2\approx 60c^2). As a distinct feature of our work, we have combined the analytical linear approach with high-resolution relativistic hydrodynamical simulations, which has allowed us i) to identify, in the linear regime, resonant modes specific to the relativistic shear layer ii) to confirm the result of the linear analysis with numerical simulations and, iii) more interestingly, to follow the instability development through the non-linear regime. We find that very high-order reflection modes with dominant growth rates can modify the global, long-term stability of the relativistic flow. We discuss the dependence of these resonant modes on the jet flow Lorentz factor and specific internal energy, and on the shear layer thickness. The results could have potential applications in the field of extragalactic relativistic jets.Comment: Accepted for publication in Physical Review E. For better quality images, please check http://www.mpifr-bonn.mpg.de/staff/mperucho/Research.htm

    Faraday rotation in the MOJAVE blazars: 3C 273 a case study

    Full text link
    Radio polarimetric observations of Active Galactic Nuclei can reveal the magnetic field structure in the parsec-scale jets of these sources. We have observed the gamma-ray blazar 3C 273 as part of our multi-frequency survey with the Very Long Baseline Array to study Faraday rotation in a large sample of jets. Our observations re-confirm the transverse rotation measure gradient in 3C 273. For the first time the gradient is seen to cross zero which is further indication for a helical magnetic field and spine-sheath structure in the jet. We believe the difference to previous epochs is due to a different part of the jet being illuminated in our observations.Comment: 6 pages, 3 figures. To appear in the proceedings of "Beamed and Unbeamed Gamma-rays from Galaxies", held in Muonio, Finland, April 11-15, 2011. Journal of Physics: Conference Serie

    Radio Circular Polarization Produced in Helical Magnetic Fields in Eight Active Galactic Nuclei

    Get PDF
    Homan & Lister (2006) have recently published circular-polarization (CP) detections for 34 objects in the MOJAVE sample - a set of bright, compact AGN being monitored by the Very Long Baseline Array at 15 GHz. We report the detection of 15-GHz parsec-scale CP in two more AGN (3C345 and 2231+114), and confirm the MOJAVE detection of CP in 1633+382. It is generally believed that the most likely mechanism for the generation of this CP is Faraday conversion of linear polarization to CP. A helical jet magnetic-field (B-field) geometry can facilitate this process - linearly polarized emission from the far side of the jet is converted to CP as it passes through the magnetised plasma at the front side of the jet on its way toward the observer. In this case, the sign of the generated CP is essentially determined by the pitch angle and helicity of the helical B field. We have determined the pitch-angle regimes and helicities of the helical jet B fields in 8 AGN for which parsec-scale CP has been detected, and used them to predict the expected CP signs for these AGN if the CP is generated via conversion in these helical fields. We have obtained the intriguing result that our predictions agree with the observed signs in all eight cases, provided that the longitudinal B-field components in the jets correspond to South magnetic poles. This clearly non-random pattern demonstrates that the observed CP in AGN is directly associated with the presence of helical jet B fields. These results suggest that helical B fields are ubiquitous in AGN jets.Comment: 24 pages, 6 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS
    • …
    corecore