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Qualitatively new aspects of the (linear and non-linear) stability of sheared relativistic (slab) jets
are analyzed. The linear problem has been solved for a wide range of jet models well inside the
ultrarelativistic domain (flow Lorentz factors up to 20; specific internal energies ≈ 60c2). As a
distinct feature of our work, we have combined the analytical linear approach with high-resolution
relativistic hydrodynamical simulations, which has allowed us i) to identify, in the linear regime,
resonant modes specific to the relativistic shear layer ii) to confirm the result of the linear analysis
with numerical simulations and, iii) more interestingly, to follow the instability development through
the non-linear regime. We find that very high-order reflection modes with dominant growth rates
can modify the global, long-term stability of the relativistic flow. We discuss the dependence of
these resonant modes on the jet flow Lorentz factor and specific internal energy, and on the shear
layer thickness. The results could have potential applications in the field of extragalactic relativistic
jets.

PACS numbers: 47.20.-k, 47.75.+f, 98.54.Gr, 98.58.Fd, 98.62.Nx

I. INTRODUCTION

The Kelvin-Helmholtz (KH) instability (in the simplest
case, that of a tangential discontinuity of velocity at the
interface of parallel flows) is one of the classical insta-
bilities in fluid dynamics. Linear perturbation analysis
of KH instability has been presented for many situations
including incompressible and compressible fluids, surface
tension, finite shear layers, and magnetized fluids [1].

The linear analysis of the KH instability for fluids in
relativistic relative motion (infinite, single vortex sheet
approximation) was developed in the seventies in the con-
text of the stability of jets in extended extragalactic ra-
dio sources [2]. The main conclusion of these studies was
the reduction of the maximum growth rate for increas-
ing relative Lorentz factor flows and decreasing specific
internal energies (or sound speeds). The general disper-
sion relation for relativistic cylindrical jets was obtained
and solved for a range of parameter combinations of as-
trophysical interest [3, 4]. Some approximate analytical
expressions were derived [5]. General numerical solutions
of the dispersion relation were analyzed [6] and the re-
sults were applied for the first time to the interpretation
of the morphology of jets in extended radio sources and
the motion of radio components in the inner part of these
objects. Stability analysis (both in non-relativistic and
relativistic regimes) at KH instability has been used to
interpret many phenomena observed in astrophysical jets
such as quasi-periodic wiggles and knots, filaments, limb
brightening and jet disruption [7, 8]. More recently, KH
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linear stability analysis applied to very high resolution
observations has addressed to probe the physical param-
eters in these sources [9].

A general treatment of the KH instability with com-
pressible shear layers in the case of infinite plane bound-
ary (non-relativistic) problems was proposed [10]. The
study on the effects of shear layers was extended to the
case of infinite slab jets [11], concentrating on the wave
number range 0.1/Rj ≤ k ≤ 10/Rj (Rj is the jet radius)
for ordinary (nx = 0) and the first reflection (nx = 1, 2, 3)
symmetric and antisymmetric modes (nx represents the
number of nodes across the planar jet).

An attempt to investigate the growth of the KH insta-
bility in some particular class of cylindrical relativistic
sheared jets was pursued [12]. However, it was limited
to the ordinary (nr = 0) and first two reflection modes
(nr = 1, 2), and the domain of jet parameters considered
involved only marginally relativistic flows (beam flow ve-
locities ≤ 0.1c; c is the speed of light) and non-relativistic
(jet, ambient) sound speeds (≤ 0.01c). Other approaches
to the linear analysis of the stability of relativistic strat-
ified jets [13] and sheared, ultrarelativistic jets [14] have
also been performed. In the latter reference, the author
has derived approximated formulae for instability modes
excited in the shear layer.

In this paper, we report about qualitatively new as-
pects of the stability of sheared relativistic (slab) jets
in linear and non-linear regimes. We have considered a
wide range of jet/ambient parameters reaching well in-
side the ultrarelativistic domain (jet flow Lorentz factors
up to 20; jet specific internal energies ≈ 60c2). Instead
of focusing on the stabilization effect of the shear layer
on the ordinary modes alone [12], we have also studied
the properties of very high-order (nx & 20) reflection
modes which have the largest growth rates and then dom-
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inate the global stability properties of the flow. Finally,
we have combined the analytical linear approach with
high resolution relativistic hydrodynamical simulations
which have allowed us i) to confirm the results obtained
with the linear analysis and, ii) to follow the instability
development through the non-linear regime. Our selec-
tion of the two-dimensional slab geometry for our work
responds to several reasons: i) the possibility of using
larger resolutions in two dimensional simulations, com-
pared to fully three dimensional simulations, ii) the fact
that slab jets allow for the study of symmetric and an-
tisymmetric modes, contrary to cylindric geometry that
only allows for symmetric structures, iii) it is easier to
solve the linear problem equation and to interpret re-
sults from the numerical simulations in this case, so we
can gain deep knowledge on the physics of instabilities
before studying more complex (including three dimen-
sions, magnetic fields...) problems. Several recent works
have combined linear analysis and hydrodynamical simu-
lations in connection with several astrophysical scenarios
(i.e., relativistic jets [15] and gamma-ray bursts [16]), the
relativistic nature of the jet parameters considered (that
includes the ultrarelativistic limit), the modes explored
(very high-order reflection modes), and the complemen-
tarity of linear analysis and non-linear high-resolution
simulations make the present work unique. The results
of the numerical simulations in the nonlinear regime are
presented elsewhere [17]. The results shown in this pa-
per concerning the stability of relativistic sheared flows
could be of potential interest in the field of extragalactic
relativistic jets.

II. INSTABILITIES IN SHEARED

RELATIVISTIC JETS. LINEAR ANALYSIS

We start with the equations governing the evolution of
a slab relativistic perfect-fluid jet for which the energy-
momentum tensor can be written as

T µν = (ρe + P )uµuν + Pηµν (1)

(units have been used so that c = 1; Greek indices, µ, ν,
run from 0 to 3), where ρe is the energy density, P the
pressure and uν the fluid four-velocity. The tensor ηµν

is the metric tensor describing the geometry of the fixed,
flat space-time where the fluid evolves. In the following
we will use uµ = γ(1, ~v), γ being the Lorentz factor,

γ = 1/
√

1 − v2.
The initial equilibrium configuration is that of a steady

slab jet in Cartesian coordinates flowing along the z-
coordinate, surrounded by a denser and colder ambient
medium. A single-component ideal gas equation of state
with adiabatic exponent Γ = 4/3 has been used to de-
scribe both jet and ambient media. Both media are in
pressure equilibrium and are separated by a smooth shear
layer of the form [11]

a(x) = a∞ + (a0 − a∞)/ cosh(xm), (2)

where a(x) is the profiled quantity (vz and ρ, the rest
mass density) and a0 and a∞, its value at the jet sym-
metry plane (at x = 0) and at x → ∞, respectively. The
integer m controls the shear layer steepness. In the limit
m → ∞ the configuration tends to the vortex-sheet case.

We now introduce an adiabatic perturbation of the
form ∝ g(x) exp(i(kzz − ωt)) in the flow equations, ω
and kz being the frequency and wave number of the per-
turbation along the jet flow. We shall follow the tempo-
ral approach, in which perturbations grow in time having
real wave numbers and complex frequencies (the imagi-
nary part being the growth rate). The number of nodes
across the planar jet, nx, distinguishes between ordinary
modes (corresponding to nx = 0) and reflection modes
(nx > 0). By linearizing the equations and eliminating
the perturbations of rest mass density and flow veloc-
ity, a second order ordinary differential equation for the
pressure perturbation, P1, is obtained [18]

P ′′

1 +

(

2γ2

0v′0z(kz − ωv0z)

ω − v0zkz

−
ρ′e,0

ρe,0 + P0

)

P ′

1+ (3)

γ2

0

(

(ω − v0zkz)
2

c2

s,0

− (kz − ωv0z)
2

)

P1 = 0

where ρe,0 is the energy-density of the unperturbed
model, P0 the pressure, v0z the three-velocity compo-
nent, γ0 = 1/

√

1 − v2

0z is the Lorentz factor and cs,0 is
the relativistic sound speed. The prime denotes the x-
derivative. Unlike the vortex sheet case, in the case of
a continuous velocity profile, a dispersion relation can
not be written explicitly. The equation (3) is integrated
from the jet axis, where boundary conditions on the am-
plitude of pressure perturbation and its first derivative
are imposed

P1(x = 0) = 1, P ′

1(x = 0) = 0 (sym. modes), (4)

P1(x = 0) = 0, P ′

1
(x = 0) = 1 (antisym. modes).

Solutions satisfying the Sommerfeld radiation conditions
(no incoming waves from infinity and wave amplitudes
decaying towards infinity) are found with the aid of
the method proposed in Ref.[19], based on the shooting
method [20].

We have solved the linear problem for more than 20
models with different specific internal energies of the jet,
Lorentz factors and shear layer widths, fixing jet/ambient
rest-mass density contrast (= 0.1). We used m =
8, 25, 2000 (shear layer width, d ≈ 0.6, 0.177, 5 10−3Rj)
and vortex sheet for jets having specific internal energies
εj = 0.4c2 (models B) and 60c2 (models D) and Lorentz
factors γj = 5 (B05, D05) and 20 (B20, D20). Solutions
with m = 2000 were considered in order to test conver-
gence to vortex sheet in the case of narrow shear layers,
with positive results. Also, fixing the width of the shear
layer by setting m = 25, we solved for εj = 0.7c2 (model
A), along with models B and D, using γj = 2.5 and 10,
in order to span a wide range of parameters [21].
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FIG. 1: Growth rate vs. longitudinal wave number for Model D20, using a shear layer with m = 25 in Eq. (2) (panel a) and
vortex sheet (panel b) for the fundamental and a series of reflection, antisymmetric modes including the one with the absolute
maximum in the growth rate. Main differences are the overall decrease of growth rates in the sheared case, and the appearance
in this case of sharp resonances at the small wave number limit for each high-order reflection mode with the largest growth
rates for a given mode.

The effect of the shear layer on the linear stability is
seen in Fig. 1 where we show the growth rates of the
fundamental and a series of reflecting (antisymmetric)
modes resulting from the solution of the equation (3)
together with the boundary conditions (4) for Model D20.
The corresponding solution for the vortex sheet case is
also shown for comparison.

We note that the reflection mode solutions of the
shear problem are more stable (i.e., the growth rates are
smaller) for most wave numbers, especially in the large
wave number limit, than the corresponding solutions in
the vortex sheet case. This behaviour was reported for
the first time for the first and second reflection modes
in the non-relativistic limit [11]. The growth rate curves
corresponding to a single n-th reflection mode consists
of a broad maximum at larger wave numbers and a lo-
cal peak which is placed in the small wave number limit,
near the marginal stability point of the mode. While in
the relativistic jet, vortex-sheet case the small wave num-
ber peaks are relatively unimportant (since the maximum
growth rates at these peaks are lower than the growth
rates of other unstable modes), in the presence of the
shear-layer they significantly dominate over other modes.
Therefore we shall call these peaks the shear layer res-

onances [22]. In Fig. 2 we show the solution for four
specific symmetric modes (two low order and two high
order reflection modes) of Model D20. Low order modes
do not show strong peaks at maximum unstable wave-
lengths, whereas high order reflection modes show peaks
(the so-called shear layer resonances) at this maximum

wavelength and do not present broad maxima. The de-
pendence of the properties of the growth rates associated
to the shear layer resonances on the jet specific inter-
nal energy, jet Lorentz factor and shear layer parameter
m can be summarized as follows: i) An increase of the
jet Lorentz factor enhances the dominance of resonant
modes with respect to ordinary and low order reflection
modes; ii) a decrease in the specific internal energy of the
jet causes resonances to appear at longer wavelengths; iii)
a widening of the shear layer reduces the growth rates and
the dominance of the shear-layer resonances, suggesting
that there is an optimal width of the shear layer that
maximizes the effect, for a given set of jet parameters; iv)
as the shear layer widens, the largest growth rate of res-
onant modes moves towards smaller wave numbers and
lower order reflection modes; v) modes with wave number
larger than some limiting value that decreases with the
shear layer width are damped significantly, consistently
with previous non-relativistic results [11].

The shear layer resonances correspond to very distinct
spatial structures of eigenmodes. In Fig. 3, we show maps
of different structures generated in a jet by pressure per-
turbation, depending on the excited KH mode, as derived
by theory and simulations. The structure of maximally
unstable eigenmodes in the vortex sheet case and non-
resonant modes in the sheared case (left panel of Fig. 3)
represents a superposition of oblique sound waves in both
the jet interior and the ambient medium. Contrarily, in
the shear layer case (central panel of Fig. 3), the most
unstable resonant modes have a very large transversal
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FIG. 2: Specific symmetric modes of Model D20. Dotted line:
first reflection mode, dashed: second reflection mode, dash-
dot: twentieth reflection mode, dash-triple dot: twenty-fifth
reflection mode. We point both the broad maxima and the
small wave number peaks present in every single mode. Small
wave number peaks of high order reflection modes show larger
growth rates and are thus defined as (shear layer) resonances.

wave number (the transversal wavelength is comparable
to the width of the shear layer) in the jet interior and
they are strongly damped in amplitude in the ambient
medium. In order to demonstrate the relevance of the
resonant modes in the evolution of the flow, we display
in the right panel of Fig. 3 an analogous pressure map
resulting from a numerical hydrodynamical simulation
[23]. In this simulation an equilibrium jet corresponding
to Model D20 with m = 25 (the value of m is 25 for all
the numerical simulations presented here, unless explic-
itly indicated) has been perturbed with a superposition
of small amplitude sinusoidal perturbations. The pres-
sure snapshot displayed in the right panel of Fig. 3 cor-
responds to an early stage of the evolution in which the
perturbation is still small (linear phase). The resonant
mode starts to dominate in the numerical simulation due
to its large growth rate, and its spatial structure is very
similar to that of the most unstable (resonant) eigenmode
obtained from the corresponding linear problem (central

panel of Fig. 3).
Fig. 4 shows two radial plots of the pressure perturba-

tion, corresponding to Model D20 introduced in the pre-
vious paragraph, at two different times (panels a and b)
during the linear phase, before (panel a) and after (panel
b) the resonant modes become dominant in the jet struc-
ture, emphasizing the conclusions derived from Fig. 3. A
clear change in the transversal structure of the perturba-
tion is observed, where the radial structure (small radial
wavelength) of the growing resonant mode is displayed in
the right panel (c) of Fig. 4. In Fig. 4c, the theoretical
profile of the fastest growing resonant mode, at the wave-
length found in the simulation, is shown. The number of
zeros in the central and right panels is the same (29 in
both cases), implying a correct identification of the mode
(29th body mode). A difference in the amplitude profile
of the mode is observed between this theoretical struc-
ture and that found in the simulations (Fig. 4b). This
is due to a growth of the modes faster than predicted
by the theory in the shear layer, which might be caused
by interactions between waves. The modulation of am-
plitudes observed in Fig. 4b for radii r < 0.8 Rj, gives
support to the idea of interference between modes.

III. NON-LINEAR EVOLUTION

The importance of the shear-layer resonant modes re-
lies not only on their dominance among solutions of the
linearized problem. The numerical simulations show that
whenever these modes appear (mostly in models with
both high Lorentz factor and high relativistic Mach num-
ber) the transition of the overall perturbed jet structure
to nonlinear regime is significantly altered. In Fig. 5 we
show how the resonant modes affect the non-linear evolu-
tion of instabilities in jets with larger Lorentz factors and
relativistic Mach numbers. The maps represent schlieren
plots for Model B20 (γ = 20, left panels) and Model B05
(γ = 5, right panels). Model B20 shows a well collimated
jet with only small scale variations in time, due to the
development of resonant modes, whereas the jet in Model
B05 undergoes strong sideways oscillations which lead to
the formation of strong oblique shocks (first panel) and
the subsequent jet disruption.

By analyzing the long-term simulation results we find
that those jets for which the resonant modes start to
dominate early in the simulation, do not disrupt, but in-
stead widen and develop a thick long-standing layer of
very large specific internal energy. An example of this
behaviour is shown in Fig. 6 were we show panels corre-
sponding to the pressure, jet mass fraction (tracer) spe-
cific internal energy and flow Lorentz factor for Model
D20 once an asymptotic quasi-steady state has been
reached. For comparison, Fig. 7 shows the equivalent set
of panels to those in Fig. 6 for the vortex-sheet approx-
imation case (m = 50). Morphological and quantitative
differences, as entrainment and jet disruption, are clearly
observed. We thus find that these resonant modes shield
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FIG. 3: Two-dimensional panels of different pressure perturbation structures for Model D20. The gray scale extends over the
pressure variations (in arbitrary units). Lengths are measured in (initial) jet radii, Rj . Flow is from left to right and periodical.
The bottom boundary corresponds to the jet symmetry plane. Left panel: vortex sheet dominant mode (low order reflection
mode) at a given wavelength (from linear solution). Central panel: Dominant mode (high order reflection mode) at the same
wavelength when m = 25 (Eq. 2) shear layer is included (also from linear solution). Right panel: Pressure perturbation map
from a hydrodynamical simulation in the linear regime. The resolution used in the simulation was 256 cells/Rj across the jet
and 32 cells/Rj , along. Grid size was 6 Rj transversally and 8 Rj axially, with an extended, decreasing resolution, grid in
the transversal direction up to 100 Rj . Periodic boundary conditions were applied at the left and right ends of the grid, and
outflow boundary conditions far from the jet in the transversal direction.

FIG. 4: Radial plots of pressure perturbation (P − P0, with P0 = 2.0 ρext c2) at two different times in the simulation for
Model D20 (see the caption of Fig. 3 for details) and a theoretical representation of the transversal structure of the fastest
growing resonant mode, at the wavelength observed in the simulation, in arbitrary units (panel c). The left panel (a) shows the
perturbation in a moment when the resonant modes have not appeared yet, and the central panel (b) shows a moment when
the resonant modes dominate the linear regime. The solid line stands for pressure perturbation at z = 0 Rj and dotted line
stands for the pressure perturbation at half grid z = 4 Rj .

jets against disruption. The presence of the hot boundary
layer as well as the shear-layer resonant modes character-
ized by short radial wavelengths modify the interaction
of the long-wavelength sound waves with the jet bound-
aries. Other facts pointing towards the non-linear stabi-
lizing role of the shear layer resonant modes are shown
in Fig 8, where the evolution of the normalized total lon-
gitudinal momentum and the width of the mixing layer
are shown as a function of time. At the end of the sim-
ulation (at time t = 1000Rj/c, well inside the non-linear
regime) Model D20, with m = 25, has transferred less
than 4% of the axial momentum to the ambient medium,
while in the corresponding vortex sheet case it has trans-
ferred as much as 40% of the axial momentum at time
t = 595Rj/c (see Figs. 6 and 7). The width of the mixing

layer developed by this model in both vortex sheet limit
and sheared flow cases also points to the stabilizing role
of the shear-layer resonant modes. Whereas in the vortex
case the mixing layer grows radially up to 4 Rj with an
expansion velocity ∼ 0.01 c, in the sheared case it only
develops up to 1.2 Rj and with a much smaller expansion
velocity ∼ 1.2 10−3 c. The width of the mixing layer is
computed as the distance between the outermost radius
where the tracer (jet mass fraction) value is 0.95 and the
innermost radius where its value is 0.05. Thus, the fall
in the width of the mixing layer for the vortex case (dot-
ted line in the plot) at the latest times of the simulation
(t = 500−600 Rj/c) is not due to a real reduction of this
width, but to the fact that there are portions of pure jet
material (where the tracer value is 1) moving at large
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FIG. 5: Schlieren plots at different times in the non-linear
regime for models B20 (left panels), at times t = 600, 700
and 720 Rj/c and B05 (right panels) at times t = 325, 375
and 510 Rj/c. Shear layer resonances shield the jet in Model
B20 against disruption. Grid size was 6 Rj transversally and
16 Rj axially in these simulations (see the caption of Fig. 3
for further details).

radii and close to regions of the grid where the external
medium material prevails (tracer ≈ 0), as can be seen in
Fig. 7. This is just an artifact of the way in which the
width of the mixing layer is computed.

IV. DISCUSSION

A. Nature of resonant modes

We have analyzed under general conditions the effect
of shear on the stability properties of relativistic flows.
The linear analysis has allowed us to discover resonant
modes specific to the relativistic shear layer that have the
largest growth rates. These modes are found to develop
in high Lorentz factor and relativistic Mach number jets.
The effects of the growth of these modes in the non-linear
stability of relativistic flows have been probed by a series
of high-resolution hydrodynamical simulations.

Fourier analysis of the results of the numerical simula-
tion shows that the fastest growing mode corresponds to
the one expected from the linear analysis. The growth
rates found in the simulations are of the order of those
predicted by linear theory close to the jet axis, but larger
by factors ranging from 1.4 to 2.0 in the shear layer, de-
pending on the jet parameters, than those predicted by
the solutions to the linear stability problem, which might

be due to non-linear interactions between the perturba-
tion waves in the shear layer.

Urpin [14] has studied the growth of instabilities in
sheared jets. In [14] an analytical approach was done for
the case of cold fluid jets with a velocity shear. One of
the most important conclusions derived from that work is
that the shear-layer instabilities found may grow faster
than the KH instabilities in the vortex sheet approxi-
mation (this fact was first pointed out by [12]). The
similarities between the instabilities reported in this pa-
per and those studied by Urpin [14] are found to be: 1)
The growth rates are larger for hotter jets, 2) the growth
rates decrease for faster jets, and 3) these instabilities are
dominant for higher order modes. The resonant modes
reported in this paper represent a manifestation of the
so-called shear-driven instabilities, which were also re-
ported by Urpin [14] for a specific set of physical con-
ditions in the jet. However, the work reported in the
present paper includes a wider set of jet parameters and
the support of the results of numerical simulations and
solutions (found via numerical methods) of the differen-
tial equation of pressure perturbation. The latter permits
a deeper analysis of the linear phase of growth of the in-
stabilities. Also, the method developed in this paper is
valid for any shape of the shear layer.

B. Formation of hot layers

The formation of a hot boundary layer surrounding the
inner core of the jet as a consequence of the growth of
resonant modes has been reported in the previous section
on the non-linear regime. In this section, the formation
of such hot boundaries is explained.

The parallel and perpendicular wavelengths of the
shear-layer resonant modes, λz and λx, respectively, are
both small (. Rj) with λx ≪ λz. Therefore their
wavevectors are almost perpendicular to the jet axis and
thus the waves propagate from the shear layer towards
the jet axis. On the other hand the resonant modes have
large growth rates, exceeding the growth rate of other
modes, so they start to dominate the evolution. In [21] it
was shown that the growth of instabilities goes through
three main stages: linear phase, saturation phase and
non-linear phase. The saturation of the linear growth of
KH instabilities in relativistic flows is stopped when the
amplitude of velocity perturbation reaches the speed of
light in the jet reference frame. As the maximum am-
plitude is reached, the sound waves propagating towards
the jet axis (in the jet reference frame) steepen and form
shock fronts. The fluid particles moving outwards from
the jet interior cross the shock, decelerate and increase
their internal energy. In addition, turbulent motions of
particles, as they go through shocks and generate small
scale velocity variations, also contribute to the conversion
of kinetic energy into internal energy. Fig. 9 illustrates
the process of generation of the hot shear layer which
protects the central core of the jet at the end of the lin-
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FIG. 6: Two-dimensional panels of logarithm of pressure (top left), tracer (top right), logarithm of specific internal energy
(bottom left) and Lorentz factor (bottom right) of Model D20 at t = 1000Rj/c well inside the non-linear regime and once an
asymptotic quasi-steady state has been reached. Lengths are measured in (initial) jet radii, Rj . Initial tracer values are 1.0 for
pure jet matter and 0.0 for pure ambient matter. As seen in the tracer panel, the final width of the jet is three times the initial
one. A thick shear layer with high specific internal energy is observed in the bottom-left panel.

ear regime for Model D20. In the left panels (panels a
to f) we display radial plots of the pressure perturbation
at different times in the transition from the linear to the
non-linear regime. The plots show how the maxima of
pressure perturbation appear in the shear layer and how
the waves steepen. In the right panels (g to l) we dis-
play radial plots of the perturbation in specific internal
energy, and show how the shocks produced by the steep-
ening of the waves expand and heat the shocked material
in the shear layer.

V. IMPLICATIONS FOR EXTRAGALACTIC

JETS

Our results offer an explanation to the morphologi-
cal FRI/FRII dichotomy of large scale extragalactic ra-
dio jets [24] and its present paradigm. This dichotomy
consists on a morphological classification of extragalactic
jets, being FRII sources those showing a high collima-
tion and bright hot-spot in the point of collision with the
ambient, and FRI sources those showing a diffuse and
decollimated morphology in their outer regions. The lat-

ter has been interpreted as due to jet disruption and mass
loading of the original flow [25]. The growth of the shear
layer resonances in the highly relativistic models consid-
ered in this paper, can explain the remarkable collima-
tion and stability properties of powerful radio jets. Cur-
rent theoretical models [25] interpret FRI morphologies
as the result of a smooth deceleration from relativistic
(γ ≤ 3, [26]) to non-relativistic transonic speeds (∼ 0.1 c)
on kpc scales. On the contrary, radio-flux asymmetries
between jets and counter-jets in the most powerful ra-
dio galaxies and quasars (FRII) indicate that relativistic
motion (γ ∼ 2 − 4, [27]) extends up to kpc scales in
these sources. In addition, current models for high en-
ergy emission from powerful jets at kpc scales [28] offer
additional support to the hypothesis of relativistic bulk
speeds on these scales. This whole picture is in agree-
ment with the results presented here as the development
of resonant, stabilizing modes occur in faster jets, while
slower jets appear to be disrupted by entrainment of am-
bient material and slowed down to v < 0.5 c during their
evolution. These conclusions point to an important con-
tribution by intrinsic properties of the source to the mor-
phological dichotomy. Nevertheless, the importance of
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FIG. 7: Two-dimensional panels of of pressure (top left), tracer (top right), logarithm of specific internal energy (bottom left)
and Lorentz factor (bottom right) of Model D20, in the vortex-sheet analytical limit, at t = 595Rj/c. Compare with Fig. 6.

FIG. 8: Left panel (a) shows the evolution of the total longitudinal momentum, normalized to the initial value of the simulation,
as a function of time, for the vortex-sheet analytical limit simulation (dotted line) and for the sheared jet simulation (dashed
line). The right panel (b) shows the width of the mixing layer, measured as the radial distance between tracer values of 0.95
and 0.05. The lines represent the same models as in panel a.

the ambient medium cannot be ruled out on the basis of
our simulations, since we consider an infinite jet in pres-
sure equilibrium flowing in an already open funnel and
surrounded by a homogeneous ambient medium.

There are plenty of arguments indicating the existence

of transversal structure in extragalactic jets at all scales
[9, 17, 29]. We have found the development of relatively
thin (≈ 2Rj), hot shear layers in models affected by the
growth of resonant modes to nonlinear amplitudes, as dis-
cussed in this paper. These hot shear layers could explain
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FIG. 9: Radial plots of pressure perturbation (P − P0, with
P0 = 2.0 ρext c2, panels a-f) and specific internal energy
(ε − ε0, with ε0 = 60.0c2, panels g-l) at different times in
simulation of Model D20. Solid line stands for pressure per-
turbation at z = 0 Rj and dotted line stands for the pressure
perturbation at half grid z = 4 Rj . The plots show how the
steepening of the pressure waves and dissipation in shocks
leads to heating of the shear layer. Note the different scales
(increase of the maxima with time) for the specific internal
energy perturbation plots.

several observational trends in the transversal structure
of powerful jets at both parsec and kiloparsec scales [29].
Conversely and according to our simulations, these tran-
sition layers could be responsible for the stability of fast,
highly supersonic jets, preventing the mass-loading and
subsequent disruption. Thicker, mixing layers formed in
slower jets could mimic the transition layers invoked in
models of FRIs [25].

Direct comparison of our results with real jets is how-
ever still difficult due to the slab geometry of the prob-
lem studied here and to the fact that magnetic fields are
not considered in our work. The latter are known to be
present in extragalactic jets and even to be dynamically
important for the evolution of compact jets. Several au-
thors have studied their influence on the stability these
objects ([30]). The inclusion of magnetic fields and three
dimensional cylindrical geometries in linear calculations
and numerical simulations is a natural further step in our
work.
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