13 research outputs found

    High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles

    Get PDF
    We demonstrate a novel approach to the controlled loading of inorganic nanoparticles and proteins into submicron- and micron-sized porous particles. The approach is based on freezing/thawing cycles, which lead to high loading densities. The process was tested for the inclusion of Au, magnetite nanoparticles, and bovine serum albumin in biocompatible vaterite carriers of micron and submicron sizes. The amounts of loaded nanoparticles or substances were adjusted by the number of freezing/thawing cycles. Our method afforded at least a three times higher loading of magnetite nanoparticles and a four times higher loading of protein for micron vaterite particles, in comparison with conventional methods such as adsorption and coprecipitation. The capsules loaded with magnetite nanoparticles by the freezing-induced loading method moved faster in a magnetic field gradient than did the capsules loaded by adsorption or coprecipitation. Our approach allows the preparation of multicomponent nanocomposite materials with designed properties such as remote control (e.g. via the application of an electromagnetic or acoustic field) and cargo unloading. Such materials could be used as multimodal contrast agents, drug delivery systems, and sensors

    Enhancement of biomimetic enzymatic mineralization of gellan gum polysaccharide hydrogels by plant-derived gallotannins

    Get PDF
    Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility

    Microstructured optical waveguide-based endoscopic probe coated with silica submicron particles

    Get PDF
    Microstructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO2) at different diameters—300 nm, 420 nm, and 900 nm—and layers of poly(diallyldimethylammonium chloride) (PDDA). We demonstrate up to three covering bilayers consisting of 300-nm silica particles. Modifications in the MOW transmission spectrum induced by coating are measured and analyzed. The proposed technique of MOW functionalization allows one to reach novel sensing capabilities, including an increase in the effective sensing area and the provision of a convenient scaffold for the attachment of long molecules such as protein

    Biodegradable Nanocarriers Resembling Extracellular Vesicles Deliver Genetic Material with the Highest Efficiency to Various Cell Types

    Get PDF
    Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co‐transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10−4 pmol of siRNA, and 1 × 10−3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo

    Alkaline phosphatase delivery system based on calcium carbonate carriers for acceleration of ossification

    No full text
    Composite bioceramic and hydrogel-based containers harboring alkaline phosphatase are generated through encapsulation of this enzyme by its immobilization into CaCO3-based bioceramic materials in combination with a hydrogel assembly technique and subsequent gelification. A refined way of synthesis and modification allows preparing the enzyme delivery system with functionalized protection layers. The particles are characterized by electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and enzyme activity measurements. Loading efficiency and loading capacity are investigated depending on particle size, time of enzyme loading, and various container compositions and enzyme concentrations. Our results reveal that the size of particles influences their morphology and this, in turn, affects the activity of the encapsulated enzymes. Various functionalizations of the surfaces, including protection by the hydrogel layer, formation of hollow silver alginate, or calcium alginate encapsulation, decrease the enzymatic activity. The presence of a good therapeutic effect on osteoblastic cells coupled with a relatively high loading capacity, biocompatibility, and ease of fabrication suggests that the developed carriers are promising candidates for efficient drug delivery, especially in the field of bone reconstruction

    Hollow silver alginate microspheres for drug delivery and surface enhanced Raman scattering detection

    No full text
    Multifunctional silver alginate hydrogel microspheres are assembled via a template assisted approach using calcium carbonate cores. Sodium alginate is immobilized into the highly porous structure of calcium carbonate microspheres followed by cross-linking in the presence of silver ions. The simultaneous processes of the growth of silver nanoparticles in the alginate matrix and the removal of the calcium carbonate template are triggered by ascorbic acid. The abundance of silver nanoparticles and their interparticular junctions in the alginate network allow for the detection of solutes using Raman spectroscopy using the surface of the plasmonic microspheres. Rhodamine B was used to illustrate the potential applications of such multifunctional plasmonic alginate hydrogel microspheres for sensing at low concentrations. A proof of principle for using such particles for the quick identification of microorganisms is then demonstrated using the Escherichia coli bacterium

    Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles

    No full text
    Development of a skin-targeted particulate delivery system providing an extended or sustained release of the payload and a localized therapeutic effect is one of the main challenges in the treatment of fungal skin infections. In the topical administration of antifungals, the drug should penetrate into the stratum corneum and lower layers of the skin in effective concentrations. Here, we introduce biodegradable calcium carbonate carriers containing 4.9% (w/w) of naftifine hydrochloride antimycotic allowing the efficient accumulation into the skin appendages. The proposed particulate formulation ensures the enhancement of the local drug concentration, prolongation of the payload release, and control over its rate. Furthermore, it provides a highly efficient cellular uptake and excellent bioavailability in vitro and enables a deep penetration during transfollicular delivery in vivo. The enhanced fungi growth inhibition efficiency of naftifine-loaded calcium carbonate carriers compared to naftifine solution makes them a promising alternative to creams and gels currently existing on the market

    Layer-by-layer assembled highly absorbing hundred-layer films containing a phthalocyanine dye: Fabrication and photosensibilization by thermal treatment

    No full text
    Highly absorbing hundred-layer films based on poly(diallyldimethylammonium chloride) (PDADMAC) of various molecular weights and on sulfonated copper phthalocyanine (CuPcTs) were prepared using layer-by-layer assembly. The multilayer films grew linearly up to 54 bilayers, indicating that the same amount of CuPcTs was adsorbed at each deposition step. This amount, however, was dependent on the molecular weight of PDADMAC in the range 100-500 kDa: the higher the molecular weight, the more CuPcTs molecules were adsorbed. This can be explained by the larger surface charge number density specific to longer polymer chains. Domains of pure PDADMAC and of the PDADMAC/CuPcTs complexwere formed in the films during the assembly. Uniform distribution of CuPcTs over the films could be achieved by thermal treatment, leading to an alpha -> beta phase transition in phthalocyanine at 300 degrees C. Annealing caused changes in the film absorbance spectra, resulting in a 30-nm red shift of the peak maxima and in a strong (up to 62%) decrease in optical density. Thermogravimetric analysis revealed thermodegradation of PDADMAC during annealing above 270 degrees C, giving rise to micrometersized cracks within the films, as evidenced by scanning electron microscopy
    corecore