15 research outputs found

    An atlas of the human liver diurnal transcriptome and its perturbation by hepatitis C virus infection

    Get PDF
    Chronic liver disease and cancer are global health challenges. The role of the circadian clock as a regulator of liver physiology and disease is well established in rodents, however, the identity and epigenetic regulation of rhythmically expressed genes in human disease is less well studied. Here we unravel the rhythmic transcriptome and epigenome of human hepatocytes using male human liver chimeric mice. We identify a large number of rhythmically expressed protein coding genes in human hepatocytes of male chimeric mice, which includes key transcription factors, chromatin modifiers, and critical enzymes. We show that hepatitis C virus (HCV) infection, a major cause of liver disease and cancer, perturbs the transcriptome by altering the rhythmicity of the expression of more than 1000 genes, and affects the epigenome, leading to an activation of critical pathways mediating metabolic alterations, fibrosis, and cancer. HCV-perturbed rhythmic pathways remain dysregulated in patients with advanced liver disease. Collectively, these data support a role for virus-induced perturbation of the hepatic rhythmic transcriptome and pathways in cancer development and may provide opportunities for cancer prevention and biomarkers to predict HCC risk

    Perturbation of the circadian clock and pathogenesis of NAFLD.

    Get PDF
    The National Institute of Health (NCI R21 CA209940 and NIDDK R01CA233794 to T.F.B.), the Agence Nationale de Recherches sur le Sida et les Hépatites Virales (ANRS, 2015/1099), the Fondation ARC pour la Recherche sur le Cancer (IHU 201901299), the Institut Universitaire de France (IUF to T.F.B), and USIAS of the University of Strasbourg (A.M.). EU-InfectEra HepBccc (T.F.B.)All living organisms including humans, experience changes in the light exposure generated by the Earth's rotation. In anticipation of this unavoidable geo-physical variability, and to generate an appropriate biochemical response, species of many phyla, including mammals have evolved a nearly 24-hour endogenous timing device known as the circadian clock (CC), which is self-sustained, cell autonomous and is present in every cell type. At the heart of the 'clock' functioning resides the CC-oscillator, an elegantly designed transcriptional-translational feedback system. Notably, the core components of the CC-oscillator not only drive daily rhythmicity of their own synthesis, but also generate circadian phase-specific variability in the expression levels of thousands of target genes through transcriptional, post-transcriptional and post-translational mechanisms. Thereby, this 'clock'-system provides proper chronological coordination in the functioning of cells, tissues and organs. The CC governs many physiologically critical functions. Among these functions, the key role of the CC in maintaining metabolic homeostasis deserves special emphasis. Indeed, the several features of the modern lifestyle (e.g. travel-induced jet lag, rotating shift work, energy-dense food) which, force disruption of circadian rhythms have recently emerged as a major driver to global health problems like obesity, cardiovascular disease and metabolic liver disease such as non-alcoholic fatty liver disease (NAFLD). Here we review, the CC-dependent pathways in different tissues which play critical roles in mediating several critical metabolic functions under physiological conditions and discuss their impact for the development of metabolic disease with a focus on the liver

    The circadian clock and liver function in health and disease

    Get PDF
    Each day, all organisms are subjected to changes in light intensity because of the Earth's rotation around its own axis. To anticipate this geo-physical variability, and to appropriately respond biochemically, most species, including mammals, have evolved an approximate 24-hour endogenous timing mechanism known as the circadian clock (CC). The 'clock' is self-sustained, cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate temporal variability in the expression levels of numerous target genes through transcriptional, post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a variety of physiologically critical hepatic functions and cellular processes are CC-controlled. Thus, it is not surprising that modern lifestyle factors (e.g. travel and jet lag, night and rotating shift work), which force 'circadian misalignment', have emerged as major contributors to global health problems including obesity, non-alcoholic fatty liver disease and steatohepatitis. Herein, we provide an overview of the CC-dependent pathways which play critical roles in mediating several hepatic functions under physiological conditions, and whose deregulation is implicated in chronic liver diseases including non-alcoholic steatohepatitis and alcohol-related liver disease

    HBx-dependent cell cycle deregulation involves interaction with cyclin E/A–cdk2 complex and destabilization of p27(Kip1)

    No full text
    The HBx (X protein of hepatitis B virus) is a promiscuous transactivator implicated to play a key role in hepatocellular carcinoma. However, HBx-regulated molecular events leading to deregulation of cell cycle or establishment of a permissive environment for hepatocarcinogenesis are not fully understood. Our cell culture-based studies suggested that HBx had a profound effect on cell cycle progression even in the absence of serum. HBx presence led to an early and sustained level of cyclin–cdk2 complex during the cell cycle combined with increased protein kinase activity of cdk2 heralding an early proliferative signal. The increased cdk2 activity also led to an early proteasomal degradation of p27(Kip1) that could be reversed by HBx-specific RNA interference and blocked by a chemical inhibitor of cdk2 or the T187A mutant of p27. Further, our co-immunoprecipitation and in vitro binding studies with recombinant proteins suggested a direct interaction between HBx and the cyclin E/A–cdk2 complex. Interference with different signalling cascades known to be activated by HBx suggested a constitutive requirement of Src kinases for the association of HBx with these complexes. Notably, the HBx mutant that did not interact with cyclin E/A failed to destabilize p27(Kip1) or deregulate the cell cycle. Thus HBx appears to deregulate the cell cycle by interacting with the key cell cycle regulators independent of its well-established role in transactivation

    Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma

    No full text
    Objective Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related mortality with chronic viral hepatitis and non-alcoholic steatohepatitis (NASH) as major aetiologies. Treatment options for HCC are unsatisfactory and chemopreventive approaches are absent. Chronic hepatitis C (CHC) results in epigenetic alterations driving HCC risk and persisting following cure. Here, we aimed to investigate epigenetic modifications as targets for liver cancer chemoprevention. Design Liver tissues from patients with NASH and CHC were analysed by ChIP-Seq (H3K27ac) and RNA-Seq. The liver disease-specific epigenetic and transcriptional reprogramming in patients was modelled in a liver cell culture system. Perturbation studies combined with a targeted small molecule screen followed by in vivo and ex vivo validation were used to identify chromatin modifiers and readers for HCC chemoprevention. Results In patients, CHC and NASH share similar epigenetic and transcriptomic modifications driving cancer risk. Using a cell-based system modelling epigenetic modifications in patients, we identified chromatin readers as targets to revert liver gene transcription driving clinical HCC risk. Proof-of-concept studies in a NASH-HCC mouse model showed that the pharmacological inhibition of chromatin reader bromodomain 4 inhibited liver disease progression and hepatocarcinogenesis by restoring transcriptional reprogramming of the genes that were epigenetically altered in patients. Conclusion Our results unravel the functional relevance of metabolic and virus-induced epigenetic alterations for pathogenesis of HCC development and identify chromatin readers as targets for chemoprevention in patients with chronic liver diseases
    corecore