11 research outputs found

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill & Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    A multimodal intention detection sensor suite for shared autonomy of upper-limb robotic prostheses

    Get PDF
    Neurorobotic augmentation (e.g., robotic assist) is now in regular use to support individuals suffering from impaired motor functions. A major unresolved challenge, however, is the excessive cognitive load necessary for the human–machine interface (HMI). Grasp control remains one of the most challenging HMI tasks, demanding simultaneous, agile, and precise control of multiple degrees-of-freedom (DoFs) while following a specific timing pattern in the joint and human–robot task spaces. Most commercially available systems use either an indirect mode-switching configuration or a limited sequential control strategy, limiting activation to one DoF at a time. To address this challenge, we introduce a shared autonomy framework centred around a low-cost multi-modal sensor suite fusing: (a) mechanomyography (MMG) to estimate the intended muscle activation, (b) camera-based visual information for integrated autonomous object recognition, and (c) inertial measurement to enhance intention prediction based on the grasping trajectory. The complete system predicts user intent for grasp based on measured dynamical features during natural motions. A total of 84 motion features were extracted from the sensor suite, and tests were conducted on 10 able-bodied and 1 amputee participants for grasping common household objects with a robotic hand. Real-time grasp classification accuracy using visual and motion features obtained 100%, 82.5%, and 88.9% across all participants for detecting and executing grasping actions for a bottle, lid, and box, respectively. The proposed multimodal sensor suite is a novel approach for predicting different grasp strategies and automating task performance using a commercial upper-limb prosthetic device. The system also shows potential to improve the usability of modern neurorobotic systems due to the intuitive control design

    Regulatory effects of estradiol on peripheral blood mononuclear cells activation in patients with Asthma

    No full text
    Asthma prevalence and severity are greater in women than in men, and mounting evidence suggests this is in part related to female steroid sex hormones. Conflicting data are reported regarding pro-and anti-inflammatory properties of estradiol. This study was designed to clarify whether estradiol may contribute to enhanced T helper (Th) 17-Associated cytokines production by peripheral blood mononuclear cells (PBMC) in asthmatic patients and healthy individuals. PBMCs from patients with asthma and healthy donors were cultured with 17-β estradiol (E2) and phytohemagglutinin (PHA). The quantitative real-Time polymerase chain reaction (qRT-PCR) was used to measure IL-6, IL-17, IL-23 and TGF-β. We observed a significant increased IL-17, IL-23 and TGF-β expression in PBMCs of patients compared to the healthy individuals. In addition, our findings indicated that IL-6 and IL-17 expressions in PBMCs were induced, following E2 treatment. Our results identified an impact of E2 in stimulation of Th17 phenotype, and upon hormonal oscillations and hormone replacement therapy (HRT), asthma inflammation may be mediated by Th17-Associated cytokines. © February 2018, Iran J Allergy Asthma Immunol. All rights reserved

    Regulatory effects of estradiol on peripheral blood mononuclear cells activation in patients with Asthma

    No full text
    Asthma prevalence and severity are greater in women than in men, and mounting evidence suggests this is in part related to female steroid sex hormones. Conflicting data are reported regarding pro-and anti-inflammatory properties of estradiol. This study was designed to clarify whether estradiol may contribute to enhanced T helper (Th) 17-Associated cytokines production by peripheral blood mononuclear cells (PBMC) in asthmatic patients and healthy individuals. PBMCs from patients with asthma and healthy donors were cultured with 17-β estradiol (E2) and phytohemagglutinin (PHA). The quantitative real-Time polymerase chain reaction (qRT-PCR) was used to measure IL-6, IL-17, IL-23 and TGF-β. We observed a significant increased IL-17, IL-23 and TGF-β expression in PBMCs of patients compared to the healthy individuals. In addition, our findings indicated that IL-6 and IL-17 expressions in PBMCs were induced, following E2 treatment. Our results identified an impact of E2 in stimulation of Th17 phenotype, and upon hormonal oscillations and hormone replacement therapy (HRT), asthma inflammation may be mediated by Th17-Associated cytokines. © February 2018, Iran J Allergy Asthma Immunol. All rights reserved

    Video Context Improves Performance in Identifying Operative Planes on Static Surgical Images

    No full text
    BACKGROUND: Correct identification of the surgical tissue planes of dissection is paramount at the operating room, and the needed skills seem to be improved with realistic dynamic models rather than mere still images. The objective is to assess the role of adding video prequels to still images taken from operations on the precision and accuracy of tissue plane identification using a validated simulation model, considering various levels of surgeons’ experience. METHODS: A prospective observational study was conducted involving 15 surgeons distributed to three equal groups, including a consultant group [C], a senior group [S], and a junior group [J]. Subjects were asked to identify and draw ideal tissue planes in 20 images selected at suitable operative moments of identification before and after showing a 10- second videoclip preceding the still image. A validated comparative metric (using a modified Hausdorff distance [%Hdu] for object matching) was used to measure the distance between lines. A precision analysis was carried out based on the difference in %Hdu between lines drawn before and after watching the videos, and between-group comparisons were analyzed using a one-way analysis of variance (ANOVA). The analysis of accuracy was done on the difference in %Hdu between lines drawn by the subjects and the ideal lines provided by an expert panel. The impact of videos on accuracy was assessed using a repeated-measures ANOVA. RESULTS: The C group showed the highest preciseness as compared to the S and J groups (mean Hdu 9.17±11.86 versus 12.1±15.5 and 20.0±18.32, respectively, p \u3c0.001) and significant differences between groups were found in 14 images (70%). Considering the expert panel as a reference, the interaction between time and experience level was significant ( F (2, 597) = 4.52, p \u3c0.001). Although the subjects of the J group were significantly less accurate than other surgeons, only this group showed significant improvements in mean %Hdu values after watching the lead-in videos ( F (1, 597) = 6.04, p = 0.014). CONCLUSIONS: Adding video context improved the ability of junior trainees to identify tissue planes of dissection. A realistic model is recommended considering experience-based differences in precision in training programs

    COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients: COVID-19 prognostic modeling using CT radiomics and machine learning

    Get PDF
    Background: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. Methods: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. Results: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95: 0.81�0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95: 0.81�0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. Conclusion: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. © 2022 The Author
    corecore