26 research outputs found

    Comparison of incidence/risk of venous thromboembolism (VTE) among selected clinical and hereditary risk markers: A community-based cohort study

    Get PDF
    BACKGROUND: Little information is available from community-based long-term VTE cohort studies to compare the absolute thrombosis risk of established clinical and genetic risk factors. MATERIALS AND METHODS: The occurrence of venous thromboembolism (VTE) was observed during a 10-year observation period in the BAvarian ThromboEmbolic Risk (BATER) study, a cohort study of 4337 women (age 18–55 years). We collected data on demographics, reproductive life, lifestyle, conditions/diseases, and particularly potential risk factors for VTE with a self-administered questionnaire. The objective was to present incidence rates of VTE and to show relative risk estimated associated with different clinical and genetic risk factors. RESULTS: 34 new, by diagnostic means confirmed VTE events occurred during the observation time of 32,656 women-years (WY). The overall incidence of VTE was 10.4 per 10(4 )WY. The incidence rates varied markedly among different risk cohorts. The highest incidence was observed in women with previous history of VTE, followed by family history of VTE. None of the measured "genetically-related risk markers" (antithrombin, protein C, FVL, prothrombin mutation, or MTHFR) showed a significant VTE risk. CONCLUSION: Most of the discussed VTE risk factors showed no significant association with the occurrence of new VTEs due to smallness of numbers. Only first-degree family history of VTE and own history of a previous VTE event depicted a significant association with future VTE. Clinical information seems to be more important to determine future VTE risk than genetically related laboratory tests

    VTE Risk assessment – a prognostic Model: BATER Cohort Study of young women

    Get PDF
    BACKGROUND: Community-based cohort studies are not available that evaluated the predictive power of both clinical and genetic risk factors for venous thromboembolism (VTE). There is, however, clinical need to forecast the likelihood of future occurrence of VTE, at least qualitatively, to support decisions about intensity of diagnostic or preventive measures. MATERIALS AND METHODS: A 10-year observation period of the Bavarian Thromboembolic Risk (BATER) study, a cohort study of 4337 women (18–55 years), was used to develop a predictive model of VTE based on clinical and genetic variables at baseline (1993). The objective was to prepare a probabilistic scheme that discriminates women with virtually no VTE risk from those at higher levels of absolute VTE risk in the foreseeable future. A multivariate analysis determined which variables at baseline were the best predictors of a future VTE event, provided a ranking according to the predictive power, and permitted to design a simple graphic scheme to assess the individual VTE risk using five predictor variables. RESULTS: Thirty-four new confirmed VTEs occurred during the observation period of over 32,000 women-years (WYs). A model was developed mainly based on clinical information (personal history of previous VTE and family history of VTE, age, BMI) and one composite genetic risk markers (combining Factor V Leiden and Prothrombin G20210A Mutation). Four levels of increasing VTE risk were arbitrarily defined to map the prevalence in the study population: No/low risk of VTE (61.3%), moderate risk (21.1%), high risk (6.0%), very high risk of future VTE (0.9%). In 10.6% of the population the risk assessment was not possible due to lacking VTE cases. The average incidence rates for VTE in these four levels were: 4.1, 12.3, 47.2, and 170.5 per 10(4 )WYs for no, moderate, high, and very high risk, respectively. CONCLUSION: Our prognostic tool – containing clinical information (and if available also genetic data) – seems to be worthwhile testing in medical practice in order to confirm or refute the positive findings of this study. Our cohort study will be continued to include more VTE cases and to increase predictive value of the model

    Colon cancer risk and different HRT formulations: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most studies have found no increased risk of colon cancer associated with hormone replacement therapy (HRT), or even a decreased risk. But information about the effects of different HRT preparations is lacking.</p> <p>Methods</p> <p>A case-control study was performed within Germany in collaboration with regional cancer registries and tumor centers. Up to 5 controls were matched to each case of colon cancer. Conditional logistic regression analysis was applied to estimate crude and adjusted odds ratios (OR) and 95% confidence intervals (95% CI). Stratified analyses were performed to get an impression of the risk associated with different estrogens and progestins.</p> <p>Results</p> <p>A total of 354 cases of colon cancer were compared with 1422 matched controls. The adjusted overall risk estimate for colon cancer (ColC) associated with ever-use of HRT was 0.97 (0.71 – 1.32). No clinically relevant trends for ColC risk were observed with increasing duration of HRT use, or increasing time since first or last HRT use in aggregate.</p> <p>Whereas the overall risk estimates were stable, the numbers in many of the sub-analyses of HRT preparation groups (estrogens and progestins) were too small for conclusions. Nevertheless, if the ColC risk estimates are taken at face value, most seemed to be reduced compared with never-use of HRT, but did not vary much across HRT formulation subgroups. In particular, no substantial difference in ColC risk was observed between HRT-containing conjugated equine estrogens (CEE) or medroxyprogesterone acetate (MPA) and other formulations more common in Europe.</p> <p>Conclusion</p> <p>Ever-use of HRT was not associated with an increased risk of colon cancer. In contrary, most risk estimates pointed non-significantly toward a lower ColC risk in HRT ever user. They did not vary markedly among different HRT formulations (estrogens, progestins). However, the small numbers and the overlapping nature of the subgroups suggest cautious interpretation.</p

    Analgesics use and ESRD in younger age: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An ad hoc peer-review committee was jointly appointed by Drug Authorities and Industry in Germany, Austria and Switzerland in 1999/2000 to review the evidence for a causal relation between phenacetin-free analgesics and nephropathy. The committee found the evidence as inconclusive and requested a new case-control study of adequate design.</p> <p>Methods</p> <p>We performed a population-based case-control study with incident cases of end-stage renal disease (ESRD) under the age of 50 years and four age and sex-matched neighborhood controls in 170 dialysis centers (153 in Germany, and 17 in Austria) from January 1, 2001 to December 31, 2004. Data on lifetime medical history, risk factors, treatment, job exposure and intake of analgesics were obtained in a standardized face-to-face interview using memory aids to enhance accuracy. Study design, study performance, analysis plan, and study report were approved by an independent international advisory committee and by the Drug Authorities involved. Unconditional logistic regression analyses were performed.</p> <p>Results</p> <p>The analysis included 907 cases and 3,622 controls who had never used phenacetin-containing analgesics in their lifetime. The use of high cumulative lifetime dose (3<sup>rd </sup>tertile) of analgesics in the period up to five years before dialysis was not associated with later ESRD. Adjusted odds ratios with 95% confidence intervals were 0.8 (0.7 – 1.0) and 1.0 (0.8 – 1.3) for ever- compared with no or low use and high use compared with low use, respectively. The same results were found for all analgesics and for mono-, and combination preparations with and without caffeine. No increased risk was shown in analyses stratifying for dose and duration. Dose-response analyses showed that analgesic use was not associated with an increased risk for ESRD up to 3.5 kg cumulative lifetime dose (98 % of the cases with ESRD). While the large subgroup of users with a lifetime dose up to 0.5 kg (278 cases and 1365 controls) showed a significantly decreased risk, a tiny subgroup of extreme users with over 3.5 kg lifetime use (19 cases and 11 controls) showed a significant risk increase. The detailed evaluation of 22 cases and 19 controls with over 2.5 kg lifetime use recommended by the regulatory advisors showed an impressive excess of other conditions than analgesics triggering the evolution of ESRD in cases compared with controls.</p> <p>Conclusion</p> <p>We found no clinically meaningful evidence for an increased risk of ESRD associated with use of phenacetin-free analgesics in single or combined formulation. The apparent risk increase shown in a small subgroup with extreme lifetime dose of analgesics is most likely an indirect, non-causal association. This hypothesis, however, cannot be confirmed or refuted within our case-control study. Overall, our results lend support to the mounting evidence that phenacetin-free analgesics do not induce ESRD and that the notion of "analgesic nephropathy" needs to be re-evaluated.</p

    Breast cancer risk associated with different HRT formulations: a register-based case-control study

    Get PDF
    BACKGROUND: Previous epidemiological studies have inconsistently shown a modestly increased breast cancer risk associated with hormone replacement therapy (HRT). Limited information is available about different formulations – particularly concerning different progestins. METHODS: A case-control study was performed within Germany in collaboration with regional cancer registries and tumor centers. Up to 5 controls were matched breast cancer cases. Conditional logistic regression analysis was applied to estimate crude and adjusted odds ratios (OR) and 95% confidence intervals (95% CI). Stratified analyses were performed to compare the risk of different estrogens, progestins, and combinations. RESULTS: A total of 3593 cases of breast cancer were identified and compared with 9098 controls. The adjusted overall risk estimate for breast cancer (BC) associated with current or past use of HRT was 1.2 (1.1–1.3), and almost identical for lag times from 6 months to 6 years prior to diagnosis. No significant trend of increasing BC risk was found with increasing duration of HRT use, or time since first or last use in aggregate. Many established BC risk factors significantly modified the effect of HRT on BC risk, particularly first-degree family history of BC, higher age, lower education, higher body mass index (BMI), and never having used oral contraceptives (OCs) during lifetime. Whereas the overall risk estimates were stable, the numbers in many of the sub-analyses of HRT formulation groups (estrogens, progestins, and combinations) were too small for strong conclusions. Nevertheless, the BC risk seems not to vary much across HRT formulation subgroups. In particular, no substantial difference in BC risk was observed between HRT containing conjugated equine estrogens (CEE) or medroxyprogesterone acetate (MPA) and other formulations more common in Europe. CONCLUSION: The BC risk of HRT use is rather small. Low risk estimates for BC and a high potential for residual confounding and bias in this observational study do not permit causal conclusions. Apparently, there is not much variation of the BC risk across HRT formulations (estrogens, progestins). However, the small numbers and the overlapping nature of some of the subgroups suggest cautious interpretation

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore